forked from pz4kybsvg/Conception
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
6.6 KiB
172 lines
6.6 KiB
#include <cmath>
|
|
#include <iostream>
|
|
#include <memory>
|
|
|
|
#include <gflags/gflags.h>
|
|
|
|
#include "drake/common/fmt_eigen.h"
|
|
#include "drake/common/proto/call_python.h"
|
|
#include "drake/examples/acrobot/acrobot_geometry.h"
|
|
#include "drake/examples/acrobot/acrobot_plant.h"
|
|
#include "drake/examples/acrobot/gen/acrobot_state.h"
|
|
#include "drake/geometry/drake_visualizer.h"
|
|
#include "drake/systems/analysis/simulator.h"
|
|
#include "drake/systems/estimators/kalman_filter.h"
|
|
#include "drake/systems/framework/diagram.h"
|
|
#include "drake/systems/framework/diagram_builder.h"
|
|
#include "drake/systems/primitives/linear_system.h"
|
|
#include "drake/systems/primitives/vector_log_sink.h"
|
|
#include "drake/systems/sensors/rotary_encoders.h"
|
|
|
|
namespace drake {
|
|
namespace examples {
|
|
namespace acrobot {
|
|
namespace {
|
|
|
|
// Simple example which simulates the Acrobot, started near the upright
|
|
// configuration, with an LQR controller designed to stabilize the unstable
|
|
// fixed point and a state estimator in the loop. Run meldis to see the
|
|
// animated result.
|
|
|
|
DEFINE_double(simulation_sec, 5.0,
|
|
"Number of seconds to simulate.");
|
|
DEFINE_double(realtime_factor, 1.0,
|
|
"Playback speed. See documentation for "
|
|
"Simulator::set_target_realtime_rate() for details.");
|
|
|
|
int do_main() {
|
|
// Make the robot.
|
|
systems::DiagramBuilder<double> builder;
|
|
auto acrobot_w_encoder = builder.AddSystem<AcrobotWEncoder<double>>(true);
|
|
acrobot_w_encoder->set_name("acrobot_w_encoder");
|
|
|
|
// Get a pointer to the actual plant subsystem (will be used below).
|
|
auto acrobot = acrobot_w_encoder->acrobot_plant();
|
|
|
|
// Attach a DrakeVisualizer so we can animate the robot.
|
|
auto scene_graph = builder.AddSystem<geometry::SceneGraph>();
|
|
AcrobotGeometry::AddToBuilder(
|
|
&builder, acrobot_w_encoder->get_output_port(1), scene_graph);
|
|
geometry::DrakeVisualizerd::AddToBuilder(&builder, *scene_graph);
|
|
|
|
// Make a Kalman filter observer.
|
|
auto observer_acrobot = std::make_unique<AcrobotWEncoder<double>>();
|
|
auto observer_context = observer_acrobot->CreateDefaultContext();
|
|
{ // Set context to upright fixed point.
|
|
AcrobotState<double>& x0 =
|
|
observer_acrobot->get_mutable_acrobot_state(observer_context.get());
|
|
x0.set_theta1(M_PI);
|
|
x0.set_theta2(0.0);
|
|
x0.set_theta1dot(0.0);
|
|
x0.set_theta2dot(0.0);
|
|
observer_acrobot->GetInputPort("elbow_torque")
|
|
.FixValue(observer_context.get(), 0.0);
|
|
}
|
|
// Make a linearization here for the exercise below. Need to do it before I
|
|
// std::move the pointers.
|
|
auto linearized_acrobot =
|
|
systems::Linearize(*observer_acrobot, *observer_context);
|
|
|
|
Eigen::Matrix4d W = Eigen::Matrix4d::Identity();
|
|
Eigen::Matrix2d V =
|
|
0.1 * Eigen::Matrix2d::Identity(); // Position measurements are clean.
|
|
auto observer =
|
|
builder.AddSystem(systems::estimators::SteadyStateKalmanFilter(
|
|
std::move(observer_acrobot), std::move(observer_context), W, V));
|
|
observer->set_name("observer");
|
|
builder.Connect(acrobot_w_encoder->get_output_port(0),
|
|
observer->get_input_port(0));
|
|
|
|
{ // As a simple exercise, analyze the closed-loop estimation error dynamics.
|
|
std::cout << "Is this system observable? "
|
|
<< systems::IsObservable(*linearized_acrobot) << std::endl;
|
|
|
|
Eigen::Matrix4d error_sys =
|
|
linearized_acrobot->A() - observer->L() * linearized_acrobot->C();
|
|
fmt::print("L = {}\n", fmt_eigen(observer->L()));
|
|
fmt::print("A - LC =\n{}\n", fmt_eigen(error_sys));
|
|
fmt::print("eig(A-LC) = {}\n", fmt_eigen(error_sys.eigenvalues().real()));
|
|
}
|
|
|
|
// Make the LQR Controller.
|
|
auto controller = builder.AddSystem(BalancingLQRController(*acrobot));
|
|
controller->set_name("controller");
|
|
builder.Connect(observer->get_output_port(0), controller->get_input_port());
|
|
builder.Connect(controller->get_output_port(),
|
|
acrobot_w_encoder->get_input_port(0));
|
|
builder.Connect(controller->get_output_port(), observer->get_input_port(1));
|
|
|
|
// Log the true state and the estimated state.
|
|
auto x_logger = LogVectorOutput(acrobot_w_encoder->get_output_port(1),
|
|
&builder);
|
|
x_logger->set_name("x_logger");
|
|
auto xhat_logger = LogVectorOutput(observer->get_output_port(0), &builder);
|
|
xhat_logger->set_name("xhat_logger");
|
|
|
|
// Build the system/simulator.
|
|
auto diagram = builder.Build();
|
|
systems::Simulator<double> simulator(*diagram);
|
|
|
|
// Set an initial condition near the upright fixed point.
|
|
AcrobotState<double>& x0 = acrobot_w_encoder->get_mutable_acrobot_state(
|
|
&(diagram->GetMutableSubsystemContext(*acrobot_w_encoder,
|
|
&simulator.get_mutable_context())));
|
|
x0.set_theta1(M_PI + 0.1);
|
|
x0.set_theta2(-.1);
|
|
x0.set_theta1dot(0.0);
|
|
x0.set_theta2dot(0.0);
|
|
|
|
// Set the initial conditions of the observer.
|
|
auto& xhat0 = diagram
|
|
->GetMutableSubsystemContext(
|
|
*observer, &simulator.get_mutable_context())
|
|
.get_mutable_continuous_state_vector();
|
|
xhat0.SetAtIndex(0, M_PI);
|
|
xhat0.SetAtIndex(1, 0.0);
|
|
xhat0.SetAtIndex(2, 0.0);
|
|
xhat0.SetAtIndex(3, 0.0);
|
|
|
|
// Simulate.
|
|
simulator.set_target_realtime_rate(FLAGS_realtime_factor);
|
|
simulator.get_mutable_integrator().set_maximum_step_size(0.01);
|
|
simulator.get_mutable_integrator().set_fixed_step_mode(true);
|
|
simulator.Initialize();
|
|
simulator.AdvanceTo(FLAGS_simulation_sec);
|
|
|
|
// Plot the results (launch call_python_client to see the plots).
|
|
const auto& x_log = x_logger->FindLog(simulator.get_context());
|
|
const auto& xhat_log = xhat_logger->FindLog(simulator.get_context());
|
|
using common::CallPython;
|
|
using common::ToPythonTuple;
|
|
CallPython("figure", 1);
|
|
CallPython("clf");
|
|
CallPython("plot", x_log.sample_times(),
|
|
(x_log.data().row(0).array() - M_PI)
|
|
.matrix().transpose());
|
|
CallPython("plot", x_log.sample_times(), x_log.data().row(1).transpose());
|
|
CallPython("legend", ToPythonTuple("theta1 - PI", "theta2"));
|
|
CallPython("axis", "tight");
|
|
|
|
CallPython("figure", 2);
|
|
CallPython("clf");
|
|
CallPython("plot", x_log.sample_times(),
|
|
(x_log.data().array() - xhat_log.data().array())
|
|
.matrix().transpose());
|
|
CallPython("ylabel", "error");
|
|
CallPython("legend", ToPythonTuple("theta1", "theta2", "theta1dot",
|
|
"theta2dot"));
|
|
CallPython("axis", "tight");
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace acrobot
|
|
} // namespace examples
|
|
} // namespace drake
|
|
|
|
int main(int argc, char* argv[]) {
|
|
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
|
return drake::examples::acrobot::do_main();
|
|
}
|