You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Conception/drake-master/solvers/constraint.h

1141 lines
40 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#pragma once
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <optional>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include "drake/common/drake_assert.h"
#include "drake/common/drake_copyable.h"
#include "drake/common/eigen_types.h"
#include "drake/common/polynomial.h"
#include "drake/common/symbolic/expression.h"
#include "drake/solvers/decision_variable.h"
#include "drake/solvers/evaluator_base.h"
#include "drake/solvers/function.h"
#include "drake/solvers/sparse_and_dense_matrix.h"
namespace drake {
namespace solvers {
// TODO(eric.cousineau): Consider enabling the constraint class directly to
// specify new slack variables.
// TODO(eric.cousineau): Consider parameterized constraints: e.g. the
// acceleration constraints in the rigid body dynamics are constraints
// on vdot and f, but are "parameterized" by q and v.
/**
* A constraint is a function + lower and upper bounds.
*
* Solver interfaces must acknowledge that these constraints are mutable.
* Parameters can change after the constraint is constructed and before the
* call to Solve().
*
* It should support evaluating the constraint, and adding it to an optimization
* problem.
*
* @ingroup solver_evaluators
*/
class Constraint : public EvaluatorBase {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(Constraint)
/**
* Constructs a constraint which has `num_constraints` rows, with an input
* `num_vars` x 1 vector.
* @param num_constraints. The number of rows in the constraint output.
* @param num_vars. The number of rows in the input.
* If the input dimension is unknown, then set `num_vars` to Eigen::Dynamic.
* @param lb Lower bound, which must be a `num_constraints` x 1 vector.
* @param ub Upper bound, which must be a `num_constraints` x 1 vector.
* @see Eval(...)
*/
template <typename DerivedLB, typename DerivedUB>
Constraint(int num_constraints, int num_vars,
const Eigen::MatrixBase<DerivedLB>& lb,
const Eigen::MatrixBase<DerivedUB>& ub,
const std::string& description = "")
: EvaluatorBase(num_constraints, num_vars, description),
lower_bound_(lb),
upper_bound_(ub) {
check(num_constraints);
DRAKE_DEMAND(!lower_bound_.array().isNaN().any());
DRAKE_DEMAND(!upper_bound_.array().isNaN().any());
}
/**
* Constructs a constraint which has `num_constraints` rows, with an input
* `num_vars` x 1 vector, with no bounds.
* @param num_constraints. The number of rows in the constraint output.
* @param num_vars. The number of rows in the input.
* If the input dimension is unknown, then set `num_vars` to Eigen::Dynamic.
* @see Eval(...)
*/
Constraint(int num_constraints, int num_vars)
: Constraint(
num_constraints, num_vars,
Eigen::VectorXd::Constant(num_constraints,
-std::numeric_limits<double>::infinity()),
Eigen::VectorXd::Constant(
num_constraints, std::numeric_limits<double>::infinity())) {}
/**
* Return whether this constraint is satisfied by the given value, `x`.
* @param x A `num_vars` x 1 vector.
* @param tol A tolerance for bound checking.
*/
bool CheckSatisfied(const Eigen::Ref<const Eigen::VectorXd>& x,
double tol = 1E-6) const {
DRAKE_ASSERT(x.rows() == num_vars() || num_vars() == Eigen::Dynamic);
return DoCheckSatisfied(x, tol);
}
bool CheckSatisfied(const Eigen::Ref<const AutoDiffVecXd>& x,
double tol = 1E-6) const {
DRAKE_ASSERT(x.rows() == num_vars() || num_vars() == Eigen::Dynamic);
return DoCheckSatisfied(x, tol);
}
symbolic::Formula CheckSatisfied(
const Eigen::Ref<const VectorX<symbolic::Variable>>& x) const {
DRAKE_ASSERT(x.rows() == num_vars() || num_vars() == Eigen::Dynamic);
return DoCheckSatisfied(x);
}
const Eigen::VectorXd& lower_bound() const { return lower_bound_; }
const Eigen::VectorXd& upper_bound() const { return upper_bound_; }
/** Number of rows in the output constraint. */
int num_constraints() const { return num_outputs(); }
protected:
/** Updates the lower bound.
* @note if the users want to expose this method in a sub-class, do
* using Constraint::UpdateLowerBound, as in LinearConstraint.
*/
void UpdateLowerBound(const Eigen::Ref<const Eigen::VectorXd>& new_lb) {
if (new_lb.rows() != num_constraints()) {
throw std::logic_error("Lower bound has invalid dimension.");
}
lower_bound_ = new_lb;
}
/** Updates the upper bound.
* @note if the users want to expose this method in a sub-class, do
* using Constraint::UpdateUpperBound, as in LinearConstraint.
*/
void UpdateUpperBound(const Eigen::Ref<const Eigen::VectorXd>& new_ub) {
if (new_ub.rows() != num_constraints()) {
throw std::logic_error("Upper bound has invalid dimension.");
}
upper_bound_ = new_ub;
}
/**
* Set the upper and lower bounds of the constraint.
* @param new_lb . A `num_constraints` x 1 vector.
* @param new_ub. A `num_constraints` x 1 vector.
* @note If the users want to expose this method in a sub-class, do
* using Constraint::set_bounds, as in LinearConstraint.
*/
void set_bounds(const Eigen::Ref<const Eigen::VectorXd>& new_lb,
const Eigen::Ref<const Eigen::VectorXd>& new_ub) {
UpdateLowerBound(new_lb);
UpdateUpperBound(new_ub);
}
virtual bool DoCheckSatisfied(const Eigen::Ref<const Eigen::VectorXd>& x,
const double tol) const {
Eigen::VectorXd y(num_constraints());
DoEval(x, &y);
return (y.array() >= lower_bound_.array() - tol).all() &&
(y.array() <= upper_bound_.array() + tol).all();
}
virtual bool DoCheckSatisfied(const Eigen::Ref<const AutoDiffVecXd>& x,
const double tol) const {
AutoDiffVecXd y(num_constraints());
DoEval(x, &y);
auto get_value = [](const AutoDiffXd& v) {
return v.value();
};
return (y.array().unaryExpr(get_value) >= lower_bound_.array() - tol)
.all() &&
(y.array().unaryExpr(get_value) <= upper_bound_.array() + tol).all();
}
virtual symbolic::Formula DoCheckSatisfied(
const Eigen::Ref<const VectorX<symbolic::Variable>>& x) const;
private:
void check(int num_constraints) const;
Eigen::VectorXd lower_bound_;
Eigen::VectorXd upper_bound_;
};
/**
* lb ≤ .5 xᵀQx + bᵀx ≤ ub
* Without loss of generality, the class stores a symmetric matrix Q.
* For a non-symmetric matrix Q₀, we can define Q = (Q₀ + Q₀ᵀ) / 2, since
* xᵀQ₀x = xᵀQ₀ᵀx = xᵀ*(Q₀+Q₀ᵀ)/2 *x. The first equality holds because the
* transpose of a scalar is the scalar itself. Hence we can always convert
* a non-symmetric matrix Q₀ to a symmetric matrix Q.
*
* @ingroup solver_evaluators
*/
class QuadraticConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(QuadraticConstraint)
static const int kNumConstraints = 1;
/**
Whether the Hessian matrix is positive semidefinite, negative semidefinite,
or indefinite.
*/
enum class HessianType {
kPositiveSemidefinite,
kNegativeSemidefinite,
kIndefinite,
};
/**
* Construct a quadratic constraint.
* @tparam DerivedQ The type for Q.
* @tparam Derivedb The type for b.
* @param Q0 The square matrix. Notice that Q₀ does not have to be symmetric.
* @param b The linear coefficient.
* @param lb The lower bound.
* @param ub The upper bound.
* @param hessian_type (optional) Indicates the type of Hessian matrix Q0.
* If hessian_type is not std::nullopt, then the user guarantees the type of
* Q0. If hessian_type=std::nullopt, then QuadraticConstraint will check the
* type of Q0. To speed up the constructor, set hessian_type != std::nullopt
* if you can. If this type is set incorrectly, then the downstream code (for
* example the solver) will malfunction.
*/
template <typename DerivedQ, typename Derivedb>
QuadraticConstraint(const Eigen::MatrixBase<DerivedQ>& Q0,
const Eigen::MatrixBase<Derivedb>& b, double lb,
double ub,
std::optional<HessianType> hessian_type = std::nullopt)
: Constraint(kNumConstraints, Q0.rows(), drake::Vector1d::Constant(lb),
drake::Vector1d::Constant(ub)),
Q_((Q0 + Q0.transpose()) / 2),
b_(b) {
UpdateHessianType(hessian_type);
DRAKE_ASSERT(Q_.rows() == Q_.cols());
DRAKE_ASSERT(Q_.cols() == b_.rows());
}
~QuadraticConstraint() override {}
/** The symmetric matrix Q, being the Hessian of this constraint.
*/
virtual const Eigen::MatrixXd& Q() const { return Q_; }
virtual const Eigen::VectorXd& b() const { return b_; }
[[nodiscard]] HessianType hessian_type() const { return hessian_type_; }
/** Returns if this quadratic constraint is convex. */
[[nodiscard]] bool is_convex() const;
/**
* Updates the quadratic and linear term of the constraint. The new
* matrices need to have the same dimension as before.
* @param new_Q new quadratic term
* @param new_b new linear term
* @param hessian_type (optional) Indicates the type of Hessian matrix Q0.
* If hessian_type is not std::nullopt, then the user guarantees the type of
* Q0. If hessian_type=std::nullopt, then QuadraticConstraint will check the
* type of Q0. To speed up the constructor, set hessian_type != std::nullopt
* if you can.
*/
template <typename DerivedQ, typename DerivedB>
void UpdateCoefficients(
const Eigen::MatrixBase<DerivedQ>& new_Q,
const Eigen::MatrixBase<DerivedB>& new_b,
std::optional<HessianType> hessian_type = std::nullopt) {
if (new_Q.rows() != new_Q.cols() || new_Q.rows() != new_b.rows() ||
new_b.cols() != 1) {
throw std::runtime_error("New constraints have invalid dimensions");
}
if (new_b.rows() != b_.rows()) {
throw std::runtime_error("Can't change the number of decision variables");
}
Q_ = (new_Q + new_Q.transpose()) / 2;
b_ = new_b;
UpdateHessianType(hessian_type);
}
private:
template <typename DerivedX, typename ScalarY>
void DoEvalGeneric(const Eigen::MatrixBase<DerivedX>& x,
VectorX<ScalarY>* y) const;
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;
// Updates hessian_type_ based on Q_;
void UpdateHessianType(std::optional<HessianType> hessian_type);
Eigen::MatrixXd Q_;
Eigen::VectorXd b_;
HessianType hessian_type_;
};
/**
Constraining the linear expression \f$ z=Ax+b \f$ lies within the Lorentz cone.
A vector z ∈ ⁿ lies within Lorentz cone if
@f[
z_0 \ge \sqrt{z_1^2+...+z_{n-1}^2}
@f]
<!-->
z₀ ≥ sqrt(z₁² + ... + zₙ₋₁²)
<-->
where A ∈ ⁿˣᵐ, b ∈ ⁿ are given matrices.
Ideally this constraint should be handled by a second-order cone solver.
In case the user wants to enforce this constraint through general nonlinear
optimization, we provide three different formulations on the Lorentz cone
constraint
1. [kConvex] g(z) = z₀ - sqrt(z₁² + ... + zₙ₋₁²) ≥ 0
This formulation is not differentiable at z₁=...=zₙ₋₁=0
2. [kConvexSmooth] g(z) = z₀ - sqrt(z₁² + ... + zₙ₋₁²) ≥ 0
but the gradient of g(z) is approximated as
∂g(z)/∂z = [1, -z₁/sqrt(z₁² + ... zₙ₋₁² + ε), ...,
-zₙ₋₁/sqrt(z₁²+...+zₙ₋₁²+ε)] where ε is a small positive number.
3. [kNonconvex] z₀²-(z₁²+...+zₙ₋₁²) ≥ 0
z₀ ≥ 0
This constraint is differentiable everywhere, but z₀²-(z₁²+...+zₙ₋₁²) ≥ 0 is
non-convex. For more information and visualization, please refer to
https://www.epfl.ch/labs/disopt/wp-content/uploads/2018/09/7.pdf
and https://docs.mosek.com/modeling-cookbook/cqo.html (Fig 3.1)
@ingroup solver_evaluators
*/
class LorentzConeConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(LorentzConeConstraint)
/**
* We provide three possible Eval functions to represent the Lorentz cone
* constraint z₀ ≥ sqrt(z₁² + ... + zₙ₋₁²). For more explanation on the three
* formulations, refer to LorentzConeConstraint documentation.
*/
enum class EvalType {
kConvex, ///< The constraint is g(z) = z₀ - sqrt(z₁² + ... + zₙ₋₁²) ≥ 0.
///< Note this formulation is non-differentiable at z₁= ...=
///< zₙ₋₁=0
kConvexSmooth, ///< Same as kConvex, but with approximated gradient that
///< exists everywhere..
kNonconvex ///< Nonconvex constraint z₀²-(z₁²+...+zₙ₋₁²) ≥ 0 and z₀ ≥ 0.
///< Note this formulation is differentiable, but at z₁= ...=
///< zₙ₋₁=0 the gradient is also 0, so a gradient-based
///< nonlinear solver can get stuck.
};
LorentzConeConstraint(const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::VectorXd>& b,
EvalType eval_type = EvalType::kConvexSmooth);
~LorentzConeConstraint() override {}
/** Getter for A. */
const Eigen::SparseMatrix<double>& A() const { return A_; }
/** Getter for dense version of A. */
const Eigen::MatrixXd& A_dense() const { return A_dense_; }
/** Getter for b. */
const Eigen::VectorXd& b() const { return b_; }
/** Getter for eval type. */
EvalType eval_type() const { return eval_type_; }
/**
* Updates the coefficients, the updated constraint is z=new_A * x + new_b in
* the Lorentz cone.
* @throws std::exception if the new_A.cols() != A.cols(), namely the variable
* size should not change.
* @pre `new_A` has to have at least 2 rows and new_A.rows() == new_b.rows().
*/
void UpdateCoefficients(const Eigen::Ref<const Eigen::MatrixXd>& new_A,
const Eigen::Ref<const Eigen::VectorXd>& new_b);
private:
template <typename DerivedX, typename ScalarY>
void DoEvalGeneric(const Eigen::MatrixBase<DerivedX>& x,
VectorX<ScalarY>* y) const;
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;
Eigen::SparseMatrix<double> A_;
// We need to store a dense matrix of A_, so that we can compute the gradient
// using AutoDiffXd, and return the gradient as a dense matrix.
Eigen::MatrixXd A_dense_;
Eigen::VectorXd b_;
const EvalType eval_type_;
};
/**
* Constraining that the linear expression \f$ z=Ax+b \f$ lies within rotated
* Lorentz cone.
* A vector z ∈ ⁿ lies within rotated Lorentz cone, if
* @f[
* z_0 \ge 0\\
* z_1 \ge 0\\
* z_0 z_1 \ge z_2^2 + z_3^2 + ... + z_{n-1}^2
* @f]
* where A ∈ ⁿˣᵐ, b ∈ ⁿ are given matrices.
* <!-->
* z₀ ≥ 0
* z₁ ≥ 0
* z₀ * z₁ ≥ z₂² + z₃² + ... zₙ₋₁²
* <-->
* For more information and visualization, please refer to
* https://docs.mosek.com/modeling-cookbook/cqo.html (Fig 3.1)
*
* @ingroup solver_evaluators
*/
class RotatedLorentzConeConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(RotatedLorentzConeConstraint)
RotatedLorentzConeConstraint(const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::VectorXd>& b)
: Constraint(
3, A.cols(), Eigen::Vector3d::Constant(0.0),
Eigen::Vector3d::Constant(std::numeric_limits<double>::infinity())),
A_(A.sparseView()),
A_dense_(A),
b_(b) {
DRAKE_DEMAND(A_.rows() >= 3);
DRAKE_ASSERT(A_.rows() == b_.rows());
}
/** Getter for A. */
const Eigen::SparseMatrix<double>& A() const { return A_; }
/** Getter for dense version of A. */
const Eigen::MatrixXd& A_dense() const { return A_dense_; }
/** Getter for b. */
const Eigen::VectorXd& b() const { return b_; }
~RotatedLorentzConeConstraint() override {}
/**
* Updates the coefficients, the updated constraint is z=new_A * x + new_b in
* the rotated Lorentz cone.
* @throw std::exception if the new_A.cols() != A.cols(), namely the variable
* size should not change.
* @pre new_A.rows() >= 3 and new_A.rows() == new_b.rows().
*/
void UpdateCoefficients(const Eigen::Ref<const Eigen::MatrixXd>& new_A,
const Eigen::Ref<const Eigen::VectorXd>& new_b);
private:
template <typename DerivedX, typename ScalarY>
void DoEvalGeneric(const Eigen::MatrixBase<DerivedX>& x,
VectorX<ScalarY>* y) const;
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;
Eigen::SparseMatrix<double> A_;
// We need to store a dense matrix of A_, so that we can compute the gradient
// using AutoDiffXd, and return the gradient as a dense matrix.
Eigen::MatrixXd A_dense_;
Eigen::VectorXd b_;
};
/**
* A constraint that may be specified using another (potentially nonlinear)
* evaluator.
* @tparam EvaluatorType The nested evaluator.
*
* @ingroup solver_evaluators
*/
template <typename EvaluatorType = EvaluatorBase>
class EvaluatorConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(EvaluatorConstraint)
/**
* Constructs an evaluator constraint, given the EvaluatorType instance
* (which will specify the number of constraints and variables), and will
* forward the remaining arguments to the Constraint constructor.
* @param evaluator EvaluatorType instance.
* @param args Arguments to be forwarded to the constraint constructor.
*/
template <typename... Args>
EvaluatorConstraint(const std::shared_ptr<EvaluatorType>& evaluator,
Args&&... args)
: Constraint(evaluator->num_outputs(), evaluator->num_vars(),
std::forward<Args>(args)...),
evaluator_(evaluator) {}
using Constraint::set_bounds;
using Constraint::UpdateLowerBound;
using Constraint::UpdateUpperBound;
protected:
/** Reference to the nested evaluator. */
const EvaluatorType& evaluator() const { return *evaluator_; }
private:
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override {
evaluator_->Eval(x, y);
}
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override {
evaluator_->Eval(x, y);
}
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override {
evaluator_->Eval(x, y);
}
std::shared_ptr<EvaluatorType> evaluator_;
};
/**
* A constraint on the values of multivariate polynomials.
*
* lb[i] <= P[i](x, y...) <= ub[i], where each P[i] is a multivariate
* polynomial in x, y...
*
* The Polynomial class uses a different variable naming scheme; thus the
* caller must provide a list of Polynomial::VarType variables that correspond
* to the members of the MathematicalProgram::Binding (the individual scalar
* elements of the given VariableList).
*
* @ingroup solver_evaluators
*/
class PolynomialConstraint : public EvaluatorConstraint<PolynomialEvaluator> {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(PolynomialConstraint)
/**
* Constructs a polynomial constraint
* @param polynomials Polynomial vector, a `num_constraints` x 1 vector.
* @param poly_vars Polynomial variables, a `num_vars` x 1 vector.
* @param lb Lower bounds, a `num_constraints` x 1 vector.
* @param ub Upper bounds, a `num_constraints` x 1 vector.
*/
PolynomialConstraint(const VectorXPoly& polynomials,
const std::vector<Polynomiald::VarType>& poly_vars,
const Eigen::VectorXd& lb, const Eigen::VectorXd& ub)
: EvaluatorConstraint(
std::make_shared<PolynomialEvaluator>(polynomials, poly_vars), lb,
ub) {}
~PolynomialConstraint() override {}
const VectorXPoly& polynomials() const { return evaluator().polynomials(); }
const std::vector<Polynomiald::VarType>& poly_vars() const {
return evaluator().poly_vars();
}
};
// TODO(bradking): consider implementing DifferentiableConstraint,
// TwiceDifferentiableConstraint, ComplementarityConstraint,
// IntegerConstraint, ...
/**
* Implements a constraint of the form @f$ lb <= Ax <= ub @f$
*
* @ingroup solver_evaluators
*/
class LinearConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(LinearConstraint)
/**
* Construct the linear constraint lb <= A*x <= ub
* @pydrake_mkdoc_identifier{dense_A}
*/
LinearConstraint(const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::VectorXd>& lb,
const Eigen::Ref<const Eigen::VectorXd>& ub);
/**
* Overloads constructor with a sparse A matrix.
* @pydrake_mkdoc_identifier{sparse_A}
*/
LinearConstraint(const Eigen::SparseMatrix<double>& A,
const Eigen::Ref<const Eigen::VectorXd>& lb,
const Eigen::Ref<const Eigen::VectorXd>& ub);
~LinearConstraint() override {}
const Eigen::SparseMatrix<double>& get_sparse_A() const {
return A_.get_as_sparse();
}
/**
* Get the matrix A as a dense matrix.
* @note this might involve memory allocation to convert a sparse matrix to a
* dense one, for better performance you should call get_sparse_A() which
* returns a sparse matrix.
*/
const Eigen::MatrixXd& GetDenseA() const;
/**
* Updates the linear term, upper and lower bounds in the linear constraint.
* The updated constraint is:
* new_lb <= new_A * x <= new_ub
* Note that the size of constraints (number of rows) can change, but the
* number of variables (number of cols) cannot.
* @param new_A new linear term
* @param new_lb new lower bound
* @param new_up new upper bound
* @pydrake_mkdoc_identifier{dense_A}
*/
void UpdateCoefficients(const Eigen::Ref<const Eigen::MatrixXd>& new_A,
const Eigen::Ref<const Eigen::VectorXd>& new_lb,
const Eigen::Ref<const Eigen::VectorXd>& new_ub);
/**
* Overloads UpdateCoefficients but with a sparse A matrix.
* @pydrake_mkdoc_identifier{sparse_A}
*/
void UpdateCoefficients(const Eigen::SparseMatrix<double>& new_A,
const Eigen::Ref<const Eigen::VectorXd>& new_lb,
const Eigen::Ref<const Eigen::VectorXd>& new_ub);
/**
* Sets A(i, j) to zero if abs(A(i, j)) <= tol.
* Oftentimes the coefficient A is computed numerically with round-off errors.
* Such small round-off errors can cause numerical issues for certain
* optimization solvers. Hence it is recommended to remove the tiny
* coefficients to achieve numerical robustness.
* @param tol The entries in A with absolute value <= tol will be set to 0.
* @note tol>= 0.
*/
void RemoveTinyCoefficient(double tol);
using Constraint::set_bounds;
using Constraint::UpdateLowerBound;
using Constraint::UpdateUpperBound;
protected:
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;
internal::SparseAndDenseMatrix A_;
private:
template <typename DerivedX, typename ScalarY>
void DoEvalGeneric(const Eigen::MatrixBase<DerivedX>& x,
VectorX<ScalarY>* y) const;
};
/**
* Implements a constraint of the form @f$ Ax = b @f$
*
* @ingroup solver_evaluators
*/
class LinearEqualityConstraint : public LinearConstraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(LinearEqualityConstraint)
/**
* Constructs the linear equality constraint Aeq * x = beq
* @pydrake_mkdoc_identifier{dense_Aeq}
*/
LinearEqualityConstraint(const Eigen::Ref<const Eigen::MatrixXd>& Aeq,
const Eigen::Ref<const Eigen::VectorXd>& beq)
: LinearConstraint(Aeq, beq, beq) {}
/**
* Overloads the constructor with a sparse matrix Aeq.
* @pydrake_mkdoc_identifier{sparse_Aeq}
*/
LinearEqualityConstraint(const Eigen::SparseMatrix<double>& Aeq,
const Eigen::Ref<const Eigen::VectorXd>& beq)
: LinearConstraint(Aeq, beq, beq) {}
/**
* Constructs the linear equality constraint a.dot(x) = beq
* @pydrake_mkdoc_identifier{row_a}
*/
LinearEqualityConstraint(const Eigen::Ref<const Eigen::RowVectorXd>& a,
double beq)
: LinearEqualityConstraint(a, Vector1d(beq)) {}
/*
* @brief change the parameters of the constraint (A and b), but not the
*variable associations
*
* note that A and b can change size in the rows only (representing a
*different number of linear constraints, but on the same decision variables)
*/
void UpdateCoefficients(const Eigen::Ref<const Eigen::MatrixXd>& Aeq,
const Eigen::Ref<const Eigen::VectorXd>& beq) {
LinearConstraint::UpdateCoefficients(Aeq, beq, beq);
}
/**
* Overloads UpdateCoefficients but with a sparse A matrix.
*/
void UpdateCoefficients(const Eigen::SparseMatrix<double>& Aeq,
const Eigen::Ref<const Eigen::VectorXd>& beq) {
LinearConstraint::UpdateCoefficients(Aeq, beq, beq);
}
private:
/**
* The user should not call this function. Call UpdateCoefficients(Aeq, beq)
* instead.
*/
template <typename DerivedA, typename DerivedL, typename DerivedU>
void UpdateCoefficients(const Eigen::MatrixBase<DerivedA>&,
const Eigen::MatrixBase<DerivedL>&,
const Eigen::MatrixBase<DerivedU>&) {
static_assert(
!std::is_same_v<DerivedA, DerivedA>,
"This method should not be called form `LinearEqualityConstraint`");
}
std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;
};
/**
* Implements a constraint of the form @f$ lb <= x <= ub @f$
*
* Note: the base Constraint class (as implemented at the moment) could
* play this role. But this class enforces that it is ONLY a bounding
* box constraint, and not something more general. Some solvers use
* this information to handle bounding box constraints differently than
* general constraints, so use of this form is encouraged.
*
* @ingroup solver_evaluators
*/
class BoundingBoxConstraint : public LinearConstraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(BoundingBoxConstraint)
BoundingBoxConstraint(const Eigen::Ref<const Eigen::VectorXd>& lb,
const Eigen::Ref<const Eigen::VectorXd>& ub);
~BoundingBoxConstraint() override {}
private:
template <typename DerivedX, typename ScalarY>
void DoEvalGeneric(const Eigen::MatrixBase<DerivedX>& x,
VectorX<ScalarY>* y) const;
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;
// This function (inheried from the base LinearConstraint class) should not be
// called by BoundingBoxConstraint, so we hide it as a private function.
// TODO(hongkai.dai): BoundingBoxConstraint should derive from Constraint, not
// from LinearConstraint.
void RemoveTinyCoefficient(double tol);
};
/**
* Implements a constraint of the form:
*
* <pre>
* Mx + q >= 0
* x >= 0
* x'(Mx + q) == 0
* </pre>
*
* An implied slack variable complements any 0 component of x. To get
* the slack values at a given solution x, use Eval(x).
*
* @ingroup solver_evaluators
*/
class LinearComplementarityConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(LinearComplementarityConstraint)
template <typename DerivedM, typename Derivedq>
LinearComplementarityConstraint(const Eigen::MatrixBase<DerivedM>& M,
const Eigen::MatrixBase<Derivedq>& q)
: Constraint(q.rows(), M.cols()), M_(M), q_(q) {}
~LinearComplementarityConstraint() override {}
const Eigen::MatrixXd& M() const { return M_; }
const Eigen::VectorXd& q() const { return q_; }
protected:
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
bool DoCheckSatisfied(const Eigen::Ref<const Eigen::VectorXd>& x,
const double tol) const override;
bool DoCheckSatisfied(const Eigen::Ref<const AutoDiffVecXd>& x,
const double tol) const override;
symbolic::Formula DoCheckSatisfied(
const Eigen::Ref<const VectorX<symbolic::Variable>>& x) const override;
private:
// Return Mx + q (the value of the slack variable).
template <typename DerivedX, typename ScalarY>
void DoEvalGeneric(const Eigen::MatrixBase<DerivedX>& x,
VectorX<ScalarY>* y) const;
// TODO(ggould-tri) We are storing what are likely statically sized matrices
// in dynamically allocated containers. This probably isn't optimal.
Eigen::MatrixXd M_;
Eigen::VectorXd q_;
};
/**
* Implements a positive semidefinite constraint on a symmetric matrix S
* @f[\text{
* S is p.s.d
* }@f]
* namely, all eigen values of S are non-negative.
*
* @ingroup solver_evaluators
*/
class PositiveSemidefiniteConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(PositiveSemidefiniteConstraint)
/**
* Impose the constraint that a symmetric matrix with size @p rows x @p rows
* is positive semidefinite.
* @see MathematicalProgram::AddPositiveSemidefiniteConstraint() for how
* to use this constraint on some decision variables. We currently use this
* constraint as a place holder in MathematicalProgram, to indicate the
* positive semidefiniteness of some decision variables.
* @param rows The number of rows (and columns) of the symmetric matrix.
*
* Example:
* @code{.cc}
* // Create a MathematicalProgram object.
* auto prog = MathematicalProgram();
*
* // Add a 2 x 2 symmetric matrix S to optimization program as new decision
* // variables.
* auto S = prog.NewSymmetricContinuousVariables<2>("S");
*
* // Impose a positive semidefinite constraint on S.
* std::shared_ptr<PositiveSemidefiniteConstraint> psd_constraint =
* prog.AddPositiveSemidefiniteConstraint(S);
*
* /////////////////////////////////////////////////////////////
* // Add more constraints to make the program more interesting,
* // but this is not needed.
*
* // Add the constraint that S(1, 0) = 1.
* prog.AddBoundingBoxConstraint(1, 1, S(1, 0));
*
* // Minimize S(0, 0) + S(1, 1).
* prog.AddLinearCost(Eigen::RowVector2d(1, 1), {S.diagonal()});
*
* /////////////////////////////////////////////////////////////
*
* // Now solve the program.
* auto result = Solve(prog);
*
* // Retrieve the solution of matrix S.
* auto S_value = GetSolution(S, result);
*
* // Compute the eigen values of the solution, to see if they are
* // all non-negative.
* Eigen::Vector4d S_stacked;
* S_stacked << S_value.col(0), S_value.col(1);
*
* Eigen::VectorXd S_eigen_values;
* psd_constraint->Eval(S_stacked, S_eigen_values);
*
* std::cout<<"S solution is: " << S << std::endl;
* std::cout<<"The eigen value of S is " << S_eigen_values << std::endl;
* @endcode
*/
explicit PositiveSemidefiniteConstraint(int rows)
: Constraint(rows, rows * rows, Eigen::VectorXd::Zero(rows),
Eigen::VectorXd::Constant(
rows, std::numeric_limits<double>::infinity())),
matrix_rows_(rows) {}
~PositiveSemidefiniteConstraint() override {}
int matrix_rows() const { return matrix_rows_; }
protected:
/**
* Evaluate the eigen values of the symmetric matrix.
* @param x The stacked columns of the symmetric matrix.
*/
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
/**
* @param x The stacked columns of the symmetric matrix. This function is not
* supported yet, since Eigen's eigen value solver does not accept AutoDiffXd.
*/
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
/**
* @param x The stacked columns of the symmetric matrix. This function is not
* supported, since Eigen's eigen value solver does not accept
* symbolic::Expression.
*/
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
private:
int matrix_rows_; // Number of rows in the symmetric matrix being positive
// semi-definite.
};
/**
* Impose the matrix inequality constraint on variable x
* <!-->
* F₀ + x₁ * F₁ + ... xₙ * Fₙ is p.s.d
* <-->
* @f[
* F_0 + x_1 F_1 + ... + x_n F_n \text{ is p.s.d}
* @f]
* where p.s.d stands for positive semidefinite.
* @f$ F_0, F_1, ..., F_n @f$ are all given symmetric matrices of the same size.
*
* @ingroup solver_evaluators
*/
class LinearMatrixInequalityConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(LinearMatrixInequalityConstraint)
/**
* @param F Each symmetric matrix F[i] should be of the same size.
* @param symmetry_tolerance The precision to determine if the input matrices
* Fi are all symmetric. @see math::IsSymmetric().
*/
LinearMatrixInequalityConstraint(
const std::vector<Eigen::Ref<const Eigen::MatrixXd>>& F,
double symmetry_tolerance = 1E-10);
~LinearMatrixInequalityConstraint() override {}
/* Getter for all given matrices F */
const std::vector<Eigen::MatrixXd>& F() const { return F_; }
/// Gets the number of rows in the matrix inequality constraint. Namely
/// Fi are all matrix_rows() x matrix_rows() matrices.
int matrix_rows() const { return matrix_rows_; }
protected:
/**
* Evaluate the eigen values of the linear matrix.
*/
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
/**
* This function is not supported, since Eigen's eigen value solver does not
* accept AutoDiffXd.
*/
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
/**
* This function is not supported, since Eigen's eigen value solver does not
* accept symbolic::Expression type.
*/
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
private:
std::vector<Eigen::MatrixXd> F_;
const int matrix_rows_{};
};
/**
* Impose a generic (potentially nonlinear) constraint represented as a
* vector of symbolic Expression. Expression::Evaluate is called on every
* constraint evaluation.
*
* Uses symbolic::Jacobian to provide the gradients to the AutoDiff method.
*
* @ingroup solver_evaluators
*/
class ExpressionConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(ExpressionConstraint)
ExpressionConstraint(const Eigen::Ref<const VectorX<symbolic::Expression>>& v,
const Eigen::Ref<const Eigen::VectorXd>& lb,
const Eigen::Ref<const Eigen::VectorXd>& ub);
/**
* @return the list of the variables involved in the vector of expressions,
* in the order that they are expected to be received during DoEval.
* Any Binding that connects this constraint to decision variables should
* pass this list of variables to the Binding.
*/
const VectorXDecisionVariable& vars() const { return vars_; }
/** @return the symbolic expressions. */
const VectorX<symbolic::Expression>& expressions() const {
return expressions_;
}
protected:
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
std::ostream& DoDisplay(std::ostream&,
const VectorX<symbolic::Variable>&) const override;
private:
VectorX<symbolic::Expression> expressions_{0};
MatrixX<symbolic::Expression> derivatives_{0, 0};
// map_var_to_index_[vars_(i).get_id()] = i.
VectorXDecisionVariable vars_{0};
std::unordered_map<symbolic::Variable::Id, int> map_var_to_index_;
// Only for caching, does not carrying hidden state.
mutable symbolic::Environment environment_;
};
/**
* An exponential cone constraint is a special type of convex cone constraint.
* We constrain A * x + b to be in the exponential cone, where A has 3 rows, and
* b is in ℝ³, x is the decision variable.
* A vector z in ℝ³ is in the exponential cone, if
* {z₀, z₁, z₂ | z₀ ≥ z₁ * exp(z₂ / z₁), z₁ > 0}.
* Equivalently, this constraint can be refomulated with logarithm function
* {z₀, z₁, z₂ | z₂ ≤ z₁ * log(z₀ / z₁), z₀ > 0, z₁ > 0}
*
* The Eval function implemented in this class is
* z₀ - z₁ * exp(z₂ / z₁) >= 0,
* z₁ > 0
* where z = A * x + b.
* It is not recommended to solve an exponential cone constraint through
* generic nonlinear optimization. It is possible that the nonlinear solver
* can accidentally set z₁ = 0, where the constraint is not well defined.
* Instead, the user should consider to solve the program through conic solvers
* that can exploit exponential cone, such as MOSEK™ and SCS.
*
* @ingroup solver_evaluators
*/
class ExponentialConeConstraint : public Constraint {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(ExponentialConeConstraint)
/**
* Constructor for exponential cone.
* Constrains A * x + b to be in the exponential cone.
* @pre A has 3 rows.
*/
ExponentialConeConstraint(
const Eigen::Ref<const Eigen::SparseMatrix<double>>& A,
const Eigen::Ref<const Eigen::Vector3d>& b);
~ExponentialConeConstraint() override{};
/** Getter for matrix A. */
const Eigen::SparseMatrix<double>& A() const { return A_; }
/** Getter for vector b. */
const Eigen::Vector3d& b() const { return b_; }
protected:
template <typename DerivedX, typename ScalarY>
void DoEvalGeneric(const Eigen::MatrixBase<DerivedX>& x,
VectorX<ScalarY>* y) const;
void DoEval(const Eigen::Ref<const Eigen::VectorXd>& x,
Eigen::VectorXd* y) const override;
void DoEval(const Eigen::Ref<const AutoDiffVecXd>& x,
AutoDiffVecXd* y) const override;
void DoEval(const Eigen::Ref<const VectorX<symbolic::Variable>>& x,
VectorX<symbolic::Expression>* y) const override;
private:
Eigen::SparseMatrix<double> A_;
Eigen::Vector3d b_;
};
} // namespace solvers
} // namespace drake