aarch64/doc: add interruption & timer drivers

toolchain_update
equation314 6 years ago
parent 7fda4e360f
commit 1aa8436d71

@ -1,5 +1,6 @@
extern crate aarch64; extern crate aarch64;
use super::BasicTimer;
use aarch64::regs::*; use aarch64::regs::*;
use volatile::*; use volatile::*;
@ -43,41 +44,33 @@ struct Registers {
} }
/// The ARM generic timer. /// The ARM generic timer.
pub struct Timer { pub struct GenericTimer {
registers: &'static mut Registers, registers: &'static mut Registers,
} }
impl Timer { impl BasicTimer for GenericTimer {
/// Returns a new instance of `Timer`. fn new() -> Self {
pub fn new() -> Timer { GenericTimer {
Timer {
registers: unsafe { &mut *(GEN_TIMER_REG_BASE as *mut Registers) }, registers: unsafe { &mut *(GEN_TIMER_REG_BASE as *mut Registers) },
} }
} }
/// Reads the generic timer's counter and returns the 64-bit counter value. fn init(&mut self) {
/// The returned value is the number of elapsed microseconds. self.registers.CORE_TIMER_IRQCNTL[0].write(1 << (CoreInterrupt::CNTPNSIRQ as u8));
pub fn read(&self) -> u64 { CNTP_CTL_EL0.write(CNTP_CTL_EL0::ENABLE::SET);
}
fn read(&self) -> u64 {
let cntfrq = CNTFRQ_EL0.get(); // 62500000 let cntfrq = CNTFRQ_EL0.get(); // 62500000
(CNTPCT_EL0.get() * 1000000 / (cntfrq as u64)) as u64 (CNTPCT_EL0.get() * 1000000 / (cntfrq as u64)) as u64
} }
/// Sets up a match in timer 1 to occur `us` microseconds from now. If fn tick_in(&mut self, us: u32) {
/// interrupts for timer 1 are enabled and IRQs are unmasked, then a timer
/// interrupt will be issued in `us` microseconds.
pub fn tick_in(&mut self, us: u32) {
let cntfrq = CNTFRQ_EL0.get(); // 62500000 let cntfrq = CNTFRQ_EL0.get(); // 62500000
CNTP_TVAL_EL0.set(((cntfrq as f64) * (us as f64) / 1000000.0) as u32); CNTP_TVAL_EL0.set(((cntfrq as f64) * (us as f64) / 1000000.0) as u32);
} }
/// Initialization timer fn is_pending(&self) -> bool {
pub fn init(&mut self) {
self.registers.CORE_TIMER_IRQCNTL[0].write(1 << (CoreInterrupt::CNTPNSIRQ as u8));
CNTP_CTL_EL0.write(CNTP_CTL_EL0::ENABLE::SET);
}
/// Returns `true` if timer interruption is pending. Otherwise, returns `false`.
pub fn is_pending(&self) -> bool {
self.registers.CORE_IRQ_SRC[0].read() & (1 << (CoreInterrupt::CNTPNSIRQ as u8)) != 0 self.registers.CORE_IRQ_SRC[0].read() & (1 << (CoreInterrupt::CNTPNSIRQ as u8)) != 0
} }
} }

@ -1,28 +1,32 @@
#[cfg(feature = "use_generic_timer")] #[cfg(feature = "use_generic_timer")]
mod generic_timer; mod generic_timer;
#[cfg(feature = "use_generic_timer")] #[cfg(feature = "use_generic_timer")]
pub use self::generic_timer::Timer; pub use self::generic_timer::GenericTimer as Timer;
#[cfg(not(feature = "use_generic_timer"))] #[cfg(not(feature = "use_generic_timer"))]
mod system_timer; mod system_timer;
#[cfg(not(feature = "use_generic_timer"))] #[cfg(not(feature = "use_generic_timer"))]
pub use self::system_timer::Timer; pub use self::system_timer::SystemTimer as Timer;
/// Initialization timer /// The Raspberry Pi timer.
pub fn init() { pub trait BasicTimer {
Timer::new().init(); /// Returns a new instance.
} fn new() -> Self;
/// Returns the current time in microseconds. /// Initialization timer.
pub fn current_time() -> u64 { fn init(&mut self);
Timer::new().read()
} /// Reads the timer's counter and returns the 64-bit counter value.
/// The returned value is the number of elapsed microseconds.
fn read(&self) -> u64;
/// Sets up a match in timer 1 to occur `us` microseconds from now. If
/// interrupts for timer 1 are enabled and IRQs are unmasked, then a timer
/// interrupt will be issued in `us` microseconds.
fn tick_in(&mut self, us: u32);
/// Sets up a match in timer 1 to occur `us` microseconds from now. If /// Returns `true` if timer interruption is pending. Otherwise, returns `false`.
/// interrupts for timer 1 are enabled and IRQs are unmasked, then a timer fn is_pending(&self) -> bool;
/// interrupt will be issued in `us` microseconds.
pub fn tick_in(us: u32) {
Timer::new().tick_in(us);
} }
/// wait for `cycle` CPU cycles /// wait for `cycle` CPU cycles

@ -1,5 +1,6 @@
use crate::IO_BASE; use super::BasicTimer;
use crate::interrupt::{Controller, Interrupt}; use crate::interrupt::{Controller, Interrupt};
use crate::IO_BASE;
use volatile::{ReadOnly, Volatile}; use volatile::{ReadOnly, Volatile};
/// The base address for the ARM system timer registers. /// The base address for the ARM system timer registers.
@ -18,7 +19,7 @@ struct Registers {
#[repr(u8)] #[repr(u8)]
#[allow(dead_code)] #[allow(dead_code)]
#[derive(Copy, Clone, PartialEq, Debug)] #[derive(Copy, Clone, PartialEq, Debug)]
enum SystemTimer { enum SystemTimerId {
Timer0 = 0, Timer0 = 0,
Timer1 = 1, Timer1 = 1,
Timer2 = 2, Timer2 = 2,
@ -26,43 +27,35 @@ enum SystemTimer {
} }
/// The Raspberry Pi ARM system timer. /// The Raspberry Pi ARM system timer.
pub struct Timer { pub struct SystemTimer {
registers: &'static mut Registers, registers: &'static mut Registers,
} }
impl Timer { impl BasicTimer for SystemTimer {
/// Returns a new instance of `Timer`. fn new() -> Self {
pub fn new() -> Timer { SystemTimer {
Timer {
registers: unsafe { &mut *(TIMER_REG_BASE as *mut Registers) }, registers: unsafe { &mut *(TIMER_REG_BASE as *mut Registers) },
} }
} }
/// Reads the system timer's counter and returns the 64-bit counter value. fn init(&mut self) {
/// The returned value is the number of elapsed microseconds. Controller::new().enable(Interrupt::Timer1);
pub fn read(&self) -> u64 { }
fn read(&self) -> u64 {
let low = self.registers.CLO.read(); let low = self.registers.CLO.read();
let high = self.registers.CHI.read(); let high = self.registers.CHI.read();
((high as u64) << 32) | (low as u64) ((high as u64) << 32) | (low as u64)
} }
/// Sets up a match in timer 1 to occur `us` microseconds from now. If fn tick_in(&mut self, us: u32) {
/// interrupts for timer 1 are enabled and IRQs are unmasked, then a timer
/// interrupt will be issued in `us` microseconds.
pub fn tick_in(&mut self, us: u32) {
let current_low = self.registers.CLO.read(); let current_low = self.registers.CLO.read();
let compare = current_low.wrapping_add(us); let compare = current_low.wrapping_add(us);
self.registers.COMPARE[SystemTimer::Timer1 as usize].write(compare); self.registers.COMPARE[SystemTimerId::Timer1 as usize].write(compare);
self.registers.CS.write(1 << (SystemTimer::Timer1 as usize)); // unmask self.registers.CS.write(1 << (SystemTimerId::Timer1 as usize)); // unmask
}
/// Initialization timer
pub fn init(&mut self) {
Controller::new().enable(Interrupt::Timer1);
} }
/// Returns `true` if timer interruption is pending. Otherwise, returns `false`. fn is_pending(&self) -> bool {
pub fn is_pending(&self) -> bool {
let controller = Controller::new(); let controller = Controller::new();
controller.is_pending(Interrupt::Timer1) controller.is_pending(Interrupt::Timer1)
} }

@ -29,6 +29,7 @@ pub fn new() -> Controller {
这些外围设备的最底层驱动实现在 crate [bcm2837](../../../crate/bcm2837/) 中,包括: 这些外围设备的最底层驱动实现在 crate [bcm2837](../../../crate/bcm2837/) 中,包括:
* GPIO * GPIO
* Interrupt
* Mini UART * Mini UART
* Mailbox * Mailbox
* Timer * Timer
@ -36,7 +37,6 @@ pub fn new() -> Controller {
一些稍微高级的与具体硬件板子相关的驱动实现在 [kernel/src/arch/aarch64/board/raspi3](../../../kernel/src/arch/aarch64/board/raspi3/) 中,包括: 一些稍微高级的与具体硬件板子相关的驱动实现在 [kernel/src/arch/aarch64/board/raspi3](../../../kernel/src/arch/aarch64/board/raspi3/) 中,包括:
* Framebuffer * Framebuffer
* IRQ
* Mailbox property interface * Mailbox property interface
* Serial * Serial
@ -55,7 +55,7 @@ pub fn new() -> Controller {
### 设置引脚模式 ### 设置引脚模式
引脚模式有 8 种:输入、输出与 alternative function 0~5。根据引脚编号向相应的 `FSEL` 寄存器的相应位写入模式代码即可。 引脚模式有 8 种:输入、输出与 alternative function 0~5。根据引脚编号向相应的 GPFSELx 寄存器的相应位写入模式代码即可。
```rust ```rust
pub fn into_alt(self, function: Function) -> Gpio<Alt> { pub fn into_alt(self, function: Function) -> Gpio<Alt> {
@ -81,12 +81,12 @@ pub fn into_input(self) -> Gpio<Input> {
引脚的上拉/下拉状态有 3 种:上拉(`10`)、下拉(`01`)与不拉(`00`)。设置该状态的流程如下: 引脚的上拉/下拉状态有 3 种:上拉(`10`)、下拉(`01`)与不拉(`00`)。设置该状态的流程如下:
1. 向 `PUD` 寄存器写入状态代码; 1. 向 GPPUD 寄存器写入状态代码;
2. 等待 150 个时钟周期; 2. 等待 150 个时钟周期;
3. 根据引脚编号向相应的 `PUDCLK` 寄存器的相应位写入 1 3. 根据引脚编号向相应的 GPPUDCLK0/1 寄存器的相应位写入 1
4. 等待 150 个时钟周期; 4. 等待 150 个时钟周期;
5. 向 `PUD` 寄存器写入 0 5. 向 GPPUD 寄存器写入 0
6. 根据引脚编号向相应的 `PUDCLK` 寄存器的相应位写入 0。 6. 根据引脚编号向相应的 GPPUDCLK0/1 寄存器的相应位写入 0。
```rust ```rust
pub fn set_gpio_pd(&mut self, pud_value: u8) { pub fn set_gpio_pd(&mut self, pud_value: u8) {
@ -101,6 +101,82 @@ pub fn set_gpio_pd(&mut self, pud_value: u8) {
} }
``` ```
## Interrupt
> 参考BCM2837 ARM Peripherals: chapter 7, Interrupts.
该设备为其他外围设备提供异步异常(中断)支持,实现在 crate [bcm2837](../../../crate/bcm2837/) 的 [interrupt.rs](../../../crate/bcm2837/src/interrupt.rs) 中。目前只有对 IRQ 的支持,没有对 FIQ 的支持。
当中断发生时IRQ basic pending 寄存器中的某些位会被设置,表示哪个 basic IRQ 待处理(详见 BCM2837 ARM Peripherals 第 114 页的表)。如果其第 8 或 9 位被设置,则需要进一步到 IRQ pending 1/2 寄存器中去查找。此时共有 64 个中断,部分如下(详见第 113 页的表)
| 编号 | 中断 |
|--------|------------------|
| 1 | system timer 1 |
| 3 | system timer 3 |
| 9 | USB controller |
| 29 | Aux int |
| 49 | gpio[0] |
| 50 | gpio[1] |
| 51 | gpio[2] |
| 52 | gpio[3] |
| 57 | uart_int |
| ... | ... |
目前 RustOS 只支持上表中的 IRQ不支持其他 basic IRQ。在 RustOS 中用到了 System Timer 与 mini UART 的 IRQ分别为 system timer 1 (1) 与 Aux int (29)。
在 [kernel/src/arch/aarch64/board/raspi3/irq.rs](../../../kernel/src/arch/aarch64/board/raspi3/irq.rs#L23) 中实现了 IRQ 的注册,只需调用 `register_irq()` 函数绑定 IRQ 编号与处理函数,在 `handle_irq()` 里就会自动处理已注册的中断。
### 启用与禁用中断
只需分别向 Enable IRQs 1/2 和 Disable IRQs 1/2 寄存器的相应位写 1 即可:
```rust
pub fn enable(&mut self, int: Interrupt) {
self.registers.EnableIRQ[int as usize / 32].write(1 << (int as usize) % 32);
}
pub fn disable(&mut self, int: Interrupt) {
self.registers.DisableIRQ[int as usize / 32].write(1 << (int as usize) % 32);
}
```
### 获取待处理的中断
只需读取 IRQ pending 1/2 寄存器中的相应位,就能知道某一 IRQ 是否待处理:
```rust
pub fn is_pending(&self, int: Interrupt) -> bool {
self.registers.IRQPending[int as usize / 32].read() & (1 << (int as usize) % 32) != 0
}
```
此外也可将当前所有待处理的 IRQ 构成一个迭代器方便遍历:
```rust
pub struct PendingInterrupts(u64);
impl Iterator for PendingInterrupts {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let int = self.0.trailing_zeros();
if int < 64 {
self.0 &= !(1 << int);
Some(int as usize)
} else {
None
}
}
}
pub fn pending_interrupts(&self) -> PendingInterrupts {
let irq1 = self.registers.IRQPending[0].read() as u64;
let irq2 = self.registers.IRQPending[1].read() as u64;
PendingInterrupts((irq2 << 32) | irq1)
}
```
## Mini UART ## Mini UART
> 参考BCM2837 ARM Peripherals: chapter 2, Auxiliaries: UART1 & SPI1, SPI2; chapter 6, General Purpose I/O (GPIO), page 101~102. > 参考BCM2837 ARM Peripherals: chapter 2, Auxiliaries: UART1 & SPI1, SPI2; chapter 6, General Purpose I/O (GPIO), page 101~102.
@ -113,7 +189,7 @@ RustOS 中 mini UART 的驱动主要实现在 crate [bcm2837](../../../crate/bcm
初始化 mini UART 的流程如下: 初始化 mini UART 的流程如下:
1. 向 `AUX_ENABLES` 寄存写 1启用 mini UART 1. 向 AUX_ENABLES 寄存写 1启用 mini UART
2. 将 GPIO 的 14/15 引脚都设为 alternative function ALT5 (TXD1/RXD1) 模式,并都设为不拉状态; 2. 将 GPIO 的 14/15 引脚都设为 alternative function ALT5 (TXD1/RXD1) 模式,并都设为不拉状态;
3. 配置 mini UART 参数: 3. 配置 mini UART 参数:
@ -182,8 +258,8 @@ Mailbox 有若干通道(channels),不同通道提供不同种类的功能。
读的流程如下: 读的流程如下:
1. 读状态寄存器 `MAIL0_STA`,直到 `MailboxEmpty` 位没有被设置; 1. 读状态寄存器 MAIL0_STA直到 empty 位没有被设置;
2. 从 `MAIL0_RD` 寄存器读取数据; 2. 从 MAIL0_RD 寄存器读取数据;
3. 如果数据的最低 4 位不与要读的通道匹配,则回到 1 3. 如果数据的最低 4 位不与要读的通道匹配,则回到 1
4. 否则返回数据的高 28 位。 4. 否则返回数据的高 28 位。
@ -201,8 +277,8 @@ pub fn read(&self, channel: MailboxChannel) -> u32 {
写的流程如下: 写的流程如下:
1. 读状态寄存器 `MAIL1_STA`,直到 `MailboxFull` 位没有被设置; 1. 读状态寄存器 MAIL1_STA直到 full 位没有被设置;
3. 将数据(高 28 位)与通道(低 4 位)拼接,写入 `MAIL1_WRT` 寄存器。 3. 将数据(高 28 位)与通道(低 4 位)拼接,写入 MAIL1_WRT 寄存器。
```rust ```rust
pub fn write(&mut self, channel: MailboxChannel, data: u32) { pub fn write(&mut self, channel: MailboxChannel, data: u32) {
@ -264,10 +340,125 @@ pub fn framebuffer_get_physical_size() -> PropertyMailboxResult<(u32, u32)> {
## Timer ## Timer
BCM283x 系列可用下列三种不同的时钟:
* System TimerBCM2837 ARM Peripherals 第 12 章IO 基地址为 `0x3F003000`,最常用的时钟,但是在 QEMU 中不可用;
* ARM TimerBCM2837 ARM Peripherals 第 14 章IO 基地址为 `0x3F00B400`,在 QEMU 中也不可用RustOS 并未实现;
* Generic TimerARMv8 Reference Manual 第 D10 章,通过 AArch64 系统寄存器访问 CPU 的时钟,外围设备只提供了中断控制(IO 基地址为 `0x40000000`),可同时在 QEMU 与真机上使用。
时钟主要实现在 crate [bcm2837](../../../crate/bcm2837/) 的 [timer](../../../crate/bcm2837/src/timer) 模块中。可以指定 crate bcm2837 的 feature `use_generic_timer` 来选择是否使用 Generic Timer。在 [mod.rs](../../../crate/bcm2837/src/timer/mod.rs#L12) 中提供了以下 `trait`,具体的时钟驱动需要实现这些函数:
```rust
/// The Raspberry Pi timer.
pub trait BasicTimer {
/// Returns a new instance.
fn new() -> Self;
/// Initialization timer.
fn init(&mut self);
/// Reads the timer's counter and returns the 64-bit counter value.
/// The returned value is the number of elapsed microseconds.
fn read(&self) -> u64;
/// Sets up a match in timer 1 to occur `us` microseconds from now. If
/// interrupts for timer 1 are enabled and IRQs are unmasked, then a timer
/// interrupt will be issued in `us` microseconds.
fn tick_in(&mut self, us: u32);
/// Returns `true` if timer interruption is pending. Otherwise, returns `false`.
fn is_pending(&self) -> bool;
}
```
在 [kernel/src/arch/aarch64/board/raspi3/timer.rs](../../../kernel/src/arch/aarch64/board/raspi3/timer.rs) 中对这些函数进行了简单封装。在 [kernel/src/arch/aarch64/board/raspi3/irq.rs](../../../kernel/src/arch/aarch64/board/raspi3/irq.rs#L9) 的 `handler_irq()` 函数中处理了时钟中断:
```rust
let controller = bcm2837::timer::Timer::new();
if controller.is_pending() {
super::timer::set_next();
crate::trap::timer();
}
```
### System Timer ### System Timer
> 参考BCM2837 ARM Peripherals: chapter 12, System Timer.
System Timer 通过 CS、CLO、CHI 等 IO 地址访问时钟,通过上文 Interrupt 节描述的 IRQ 控制器提供中断(IRQ 编号为 system timer 1)。实现方式如下:
* 初始化:使用 [interrupt](../../../crate/bcm2837/src/interrupt.rs#L68) 模块的 `enable()` 函数启用 system timer 1 IRQ
* 当前时刻:分别读取时钟计数器的高、低 32 位(CLO、CHI),再拼接起来得到 64 位计数器值(单位微秒)
* 设置下一次中断的时刻:向 System Timer Compare 1 (C1) 寄存器写入当前计数器值加上时间间隔,同时向 System Timer Control/Status (CS) 寄存器的第 1 位写入 1 表示当前的中断已被处理好;
* 判断是否有时钟中断:使用 [interrupt](../../../crate/bcm2837/src/interrupt.rs#L78) 模块的 `is_pending()` 函数。
```rust
fn init(&mut self) {
Controller::new().enable(Interrupt::Timer1);
}
fn read(&self) -> u64 {
let low = self.registers.CLO.read();
let high = self.registers.CHI.read();
((high as u64) << 32) | (low as u64)
}
fn tick_in(&mut self, us: u32) {
let current_low = self.registers.CLO.read();
let compare = current_low.wrapping_add(us);
self.registers.COMPARE[SystemTimerId::Timer1 as usize].write(compare);
self.registers.CS.write(1 << (SystemTimerId::Timer1 as usize)); // unmask
}
fn is_pending(&self) -> bool {
let controller = Controller::new();
controller.is_pending(Interrupt::Timer1)
}
```
### Generic Timer ### Generic Timer
> 参考:
> 1. ARMv8 Reference Manual: chapter D10, The Generic Timer in AArch64 state.
> 2. BCM2836 ARM-local peripherals (Quad-A7 control): section 4.6, Core timers interrupts; section 4.10, Core interrupt sources.
RustOS 实现的 Generic Timer 是 CPU 在 EL1 下的 Physical Timer可通过下列 AArch64 系统寄存器访问:
| Generic Timer 系统寄存器 | 名称 | 描述 |
|----------------------------|----------------------------------------------------|------------------------------------------------|
| `CNTFRQ_EL0` | Counter-timer Frequency register | 获取时钟的频率,单位 Hz典型的值为 62.5 MHz |
| `CNTP_CTL_EL0` | Counter-timer Physical Timer Control register | 控制 Physical Timer 是否启用,中断是否屏蔽等 |
| `CNTP_TVAL_EL0` | Counter-timer Physical Timer TimerValue register | 下一次时钟中断要再经过多少时钟周期。每当时钟计数器增加 1该值就会减少 1如果该值为 0 了就会触发时钟中断 |
| `CNTPCT_EL0` | Counter-timer Physical Count register | 获取时钟计数器的值 |
而 Generic Timer 的中断控制器需要通过 `0x40000000` 开始的那些 IO 地址访问。Generic Timer 实现方式如下:
* 初始化:将 `CNTP_CTL_EL0` 寄存器的 ENABLE 位置为 1启用 CPU Physical Timer将 Core0 timers Interrupt control 的 CNTPNSIRQ 位置为 1开启中断
* 当前时刻:读取 `CNTPCT_EL0` 寄存器获得当前时钟计数器的值,再与时钟频率 `CNTFRQ_EL0` 经过简单的换算即能得到以微秒为单位的当前时刻;
* 设置下一次中断的时刻:向 `CNTP_TVAL_EL0` 寄存器写入时间间隔对应的时钟周期数;
* 判断是否有时钟中断:判断 Core0 IRQ Source 的 CNTPNSIRQ 位是否为 1。
```rust
fn init(&mut self) {
self.registers.CORE_TIMER_IRQCNTL[0].write(1 << (CoreInterrupt::CNTPNSIRQ as u8));
CNTP_CTL_EL0.write(CNTP_CTL_EL0::ENABLE::SET);
}
fn read(&self) -> u64 {
let cntfrq = CNTFRQ_EL0.get(); // 62500000
(CNTPCT_EL0.get() * 1000000 / (cntfrq as u64)) as u64
}
fn tick_in(&mut self, us: u32) {
let cntfrq = CNTFRQ_EL0.get(); // 62500000
CNTP_TVAL_EL0.set(((cntfrq as f64) * (us as f64) / 1000000.0) as u32);
}
fn is_pending(&self) -> bool {
self.registers.CORE_IRQ_SRC[0].read() & (1 << (CoreInterrupt::CNTPNSIRQ as u8)) != 0
}
```
## Framebuffer ## Framebuffer
## Console ## Console

@ -2,7 +2,7 @@
## AArch64 异常模型 ## AArch64 异常模型
> 参考ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile: capture D1.1, D1.7, D1.10, D1.11, D1.13, D1.14, D1.16. > 参考ARMv8 Reference Manual: chapter D1.1, D1.7, D1.10, D1.11, D1.13, D1.14, D1.16.
在 AArch64 中,各种中断被统称为**异常**(exception),包括: 在 AArch64 中,各种中断被统称为**异常**(exception),包括:
@ -47,7 +47,7 @@
| LowerAArch64 | `0x400` | `0x480` | `0x500` | `0x580` | | LowerAArch64 | `0x400` | `0x480` | `0x500` | `0x580` |
| LowerAArch32 | `0x600` | `0x680` | `0x700` | `0x780` | | LowerAArch32 | `0x600` | `0x680` | `0x700` | `0x780` |
如果该异常是 Synchronous 或 SError**异常症状寄存器**(Exception Syndrome Register, ESR)将被设置,用于记录具体的异常类别 EC (exception class) 与 ISS (Instruction Specific Syndrome)。在 EL1、EL2、EL3 下各有一个 ESR 寄存器 `ESR_ELx`。具体的 EC、ISS 编码见官文档 ARMv8 Reference Manual D1.10.4 节。 如果该异常是 Synchronous 或 SError**异常症状寄存器**(Exception Syndrome Register, ESR)将被设置,用于记录具体的异常类别 EC (exception class) 与 ISS (Instruction Specific Syndrome)。在 EL1、EL2、EL3 下各有一个 ESR 寄存器 `ESR_ELx`。具体的 EC、ISS 编码见官文档 ARMv8 Reference Manual D1.10.4 节。
### 异常屏蔽 ### 异常屏蔽

@ -2,7 +2,7 @@
## AArch64 虚拟内存系统 ## AArch64 虚拟内存系统
> 参考ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile: capture D5, The AArch64 Virtual Memory System Architecture. > 参考ARMv8 Reference Manual: chapter D5, The AArch64 Virtual Memory System Architecture.
(注:完整的 AArch64 文档中描述了许多可选的配置,如页大小、翻译表级数等,以下描述都是指在 RustOS 中的实现,不代表只有这一种实现方式) (注:完整的 AArch64 文档中描述了许多可选的配置,如页大小、翻译表级数等,以下描述都是指在 RustOS 中的实现,不代表只有这一种实现方式)
@ -69,7 +69,7 @@ AArch64 拥有 64 位地址,支持两段虚拟内存地址空间,分别为
![](img/block-page-descriptor_attributes.png) ![](img/block-page-descriptor_attributes.png)
各字段的具体说明详见官文档 ARMv8 Reference Manual D5.3.3 节。 各字段的具体说明详见官文档 ARMv8 Reference Manual D5.3.3 节。
### 内存属性 (D5.5) ### 内存属性 (D5.5)

@ -27,7 +27,7 @@
* EL2: Hypervisor. * EL2: Hypervisor.
* EL3: Secure monitor. * EL3: Secure monitor.
级别越高,特权(privilege)越高。一般称 EL0 为非特权级(unprivileged),其他的为特权级(unprivileged)。 级别越高,特权(privilege)越高。一般称 EL0 为非特权级(unprivileged),其他的为特权级(privileged)。
### 寄存器 ### 寄存器
@ -83,8 +83,8 @@ AArch64 有下列**特殊寄存器**(Special-purpose registers)
| 系统寄存器_ELx | 名称 | 描述 | | 系统寄存器_ELx | 名称 | 描述 |
|------------------|-----------------------------------------|------------------------------| |------------------|-----------------------------------------|------------------------------|
| CTR | Cache Type Register | 获取 cache 信息 | | CTR | Cache Type Register | 获取 cache 信息 |
| ESR | Exception Syndrome Register | 保存发生异常的原因 | | ESR | Exception Syndrome Register | 发生异常的原因 |
| FAR | Fault Address Register | 保存发生访存错误的虚拟地址 | | FAR | Fault Address Register | 发生访存错误的虚拟地址 |
| HCR | Hypervisor Configuration Register | 配置 EL2 下的虚拟化 | | HCR | Hypervisor Configuration Register | 配置 EL2 下的虚拟化 |
| MAIR | Memory Attribute Indirection Register | 配置内存属性 | | MAIR | Memory Attribute Indirection Register | 配置内存属性 |
| MPIDR | Multiprocessor Affinity Register | 多核系统中核的编号 | | MPIDR | Multiprocessor Affinity Register | 多核系统中核的编号 |
@ -117,10 +117,10 @@ crate [aarch64](https://github.com/equation314/aarch64) 的 [regs](https://githu
## 官方文档 ## 官方文档
* [ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture profile](https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf)AArch64 的完整文档,有 7000 多页,最为详细。 * [ARM Architecture Reference Manual, for ARMv8-A architecture profile](https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf)AArch64 的完整文档,有 7000 多页,最为详细。
* [ARM Cortex-A Series Programmers Guide for ARMv8-A](http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf):可认为是上一文档的精简版,仅有不到 300 页。 * [ARM Cortex-A Series Programmers Guide for ARMv8-A](http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf):可认为是上一文档的精简版,仅有不到 300 页。
* [BCM2837 ARM Peripherals](https://web.stanford.edu/class/cs140e/docs/BCM2837-ARM-Peripherals.pdf)Raspberry Pi SoC BCM283x 系列的外围设备文档,包含对 GPIO、中断控制器、mini UART、System Timer 等外围设备的访问。 * [BCM2837 ARM Peripherals](https://web.stanford.edu/class/cs140e/docs/BCM2837-ARM-Peripherals.pdf)Raspberry Pi SoC BCM283x 系列的外围设备文档,包含对 GPIO、中断控制器、mini UART、System Timer 等外围设备的访问。
* [BCM2836 ARM-local peripherals](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf):仅用于如何使用 ARM Generic Timer * [BCM2836 ARM-local peripherals (Quad-A7 control)](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf):仅用于如何使用 AArch64 Generic Timer 的中断
* [Raspberry Pi firmware](https://github.com/raspberrypi/firmware)Raspberry Pi 二进制固件,部分开源,其中最有价值的是 [mailbox](https://github.com/raspberrypi/firmware/wiki) 的文档。 * [Raspberry Pi firmware](https://github.com/raspberrypi/firmware)Raspberry Pi 二进制固件,部分开源,其中最有价值的是 [mailbox](https://github.com/raspberrypi/firmware/wiki) 的文档。
## 其他参考 ## 其他参考

@ -203,7 +203,7 @@ impl Framebuffer {
let mut value: usize = 0; let mut value: usize = 0;
let repeat = USIZE * 8 / self.fb_info.depth as usize; let repeat = USIZE * 8 / self.fb_info.depth as usize;
let mask = ((1u64 << self.fb_info.depth) - 1) as usize; let mask = ((1u64 << self.fb_info.depth) - 1) as usize;
for i in 0..repeat { for _i in 0..repeat {
value <<= self.fb_info.depth; value <<= self.fb_info.depth;
value += pixel as usize & mask; value += pixel as usize & mask;
} }

@ -1,5 +1,6 @@
use crate::arch::interrupt::TrapFrame; use crate::arch::interrupt::TrapFrame;
use bcm2837::interrupt::Controller; use bcm2837::interrupt::Controller;
use bcm2837::timer::BasicTimer;
pub use bcm2837::interrupt::Interrupt; pub use bcm2837::interrupt::Interrupt;

@ -1,17 +1,19 @@
use bcm2837::timer; use bcm2837::timer::{BasicTimer, Timer};
use log::*; use log::*;
/// Initialization timer.
pub fn init() { pub fn init() {
timer::init(); Timer::new().init();
set_next(); set_next();
info!("timer: init end"); info!("timer: init end");
} }
/// Returns the current time in microseconds.
pub fn get_cycle() -> u64 { pub fn get_cycle() -> u64 {
timer::current_time() Timer::new().read()
} }
/// Set next timer interrupt to 10 ms from now.
pub fn set_next() { pub fn set_next() {
// 10 ms Timer::new().tick_in(10 * 1000);
timer::tick_in(10 * 1000);
} }

Loading…
Cancel
Save