Merge branch 'rv32-smp-porting' into dev

# Conflicts:
#	kernel/Makefile
master
WangRunji 6 years ago
commit 1b4edf3bb2

@ -0,0 +1,72 @@
# Rust OS多核移植与基于PARD框架的线程级Label管理 方案设计文档
2015011251 王纪霆
## 实验目标
+ 完成RustOS在riscv32上的多核开启
+ 使RustOS可在中科院计算所PARD RISCV硬件环境下运行
+ 使RustOS能够在PARD上开启smp
+ 添加控制功能使得RustOS可以控制/查看PARD的寄存器
如果以上这些要全部实现,可以预料地将无法在八周内完成。
## 实验背景
[LvNA/PARD](https://github.com/LvNA-system/labeled-RISC-V)是一个用于进行内存隔离的硬件系统。它基于[rocket-chip](https://github.com/freechipsproject/rocket-chip)实现,在通常的多核以外,在核与各存储设备间增加了寄存器和额外的模块,并且对总线访问添加了标签,两者相结合下,可以完成对总线访问的控制,即对各核能够使用的缓存大小、磁盘流量进行限制等。
但目前为止这项工作还有一些问题。首先是作为控制流量的关键——control plane并未暴露给各核而需要通过硬件的JTAG机制与板子上的控制模块prm内含一个linux系统沟通并且在prm上实现控制脚本。而prm又和各核无法直接沟通这样运行在各核上的OS不仅无法修改寄存器也无法知晓自己所分配到的资源大小与PARD系统完全隔离。
如此一来这个系统仅能进行核间的隔离而无法完成进程间的隔离。这是因为为了区分进程、给两个进程打上不同的标签就必须让OS可以主动修改和设置control plane。
解决这个问题实现进程级的label管理就是这个项目的主要目的。
## 实验设计
实际上本项目的两个方向即多核移植和PARD移植是可以独立完成的。因为也可以退而求其次考虑在PARD上只运行单核的线程级标签管理。但最终的目的还是让RustOS接手PARD的所有核作为一个多核OS运行对整个系统的运行进行管理。
最理想的方法是让硬件把control plane映射到内存作为各核的一个设备。但硬件非常复杂并且中科院方也没有实现这一功能。所以还是对硬件不做修改依旧通过prm管理control plane而将prm用串口等和各核连接让其作为核的一个设备在核的控制下修改底层配置。
为此,需要做的具体来说是:
+ 让RustOS可以在核上运行
+ 在prm上写脚本运行在完善的Linux环境且有现成范例控制control plane
+ 在RustOS上写驱动使其可以与prm交互完成控制
+ 在RustOS中添加系统调用等使得操作系统可以管理驱动
另一边,多核移植所要做的是:
+ 开启多核实现原子操作等为内核中可能的竞争加锁Rust已经帮我们做了很多
+ 核间进程调度load balance
多核这边打算做的简单一些基本照搬uCore+ on rv64来做因为主要的设计和优化工作应该交给wrj同学。
## 目前进度
PARD端
+ 完成了实现机理的调研
+ 正在服务器上编译复现工程太大本地vivado编译不了
多核端:
+ 完成了ucore+ smp的初步学习
+ 学习了bbl完成了RustOS on rv32的多核开启
## 暂时计划
如果必须前八周结束,估计是无法做完的。
根据能否在前八周过后继续做,有以下远近期的计划:
### 短期
+ 完成rv32 on smp的移植第5-6周
+ 完成多核Rust OS在PARD上的运行第7-8周
### 长期
+ 完成RustOS与PARD的交互协议构建第9-11周
+ 实现基于RustOS的进程级标签管理第12周后
以上均基于只有本人一人工作的前提,若有其他人协助/加入则根据实际情况而定。

Binary file not shown.

@ -12,11 +12,13 @@
# d = int | in_asm | ... QEMU debug info
# mode = debug | release
# LOG = off | error | warn | info | debug | trace
# smp SMP core number
# board Only available on riscv32, build without bbl, run on board
arch ?= riscv32
mode ?= debug
LOG ?= debug
smp ?= 4
target := $(arch)-blog_os
kernel := target/$(target)/$(mode)/ucore
@ -31,12 +33,12 @@ ifeq ($(arch), x86_64)
qemu_opts := \
-drive format=raw,file=$(bootimage) \
-drive format=raw,file=$(SFSIMG),media=disk,cache=writeback \
-smp 4 \
-smp $(smp) \
-serial mon:stdio \
-device isa-debug-exit
endif
ifeq ($(arch), riscv32)
qemu_opts := -machine virt -kernel $(bin) -nographic -smp 4
qemu_opts := -machine virt -kernel $(bin) -nographic -smp cpus=$(smp)
endif
ifdef board
@ -104,9 +106,12 @@ endif
asm:
@$(objdump) -dS $(kernel) | less
elf-h:
header:
@$(objdump) -h $(kernel)
sym:
@$(objdump) -t $(kernel) | less
$(bin): kernel
ifdef board
@cp $(kernel) $@
@ -128,7 +133,7 @@ kernel:
ifeq ($(arch), x86_64)
@bootimage build $(build_args)
else
@cargo xbuild $(build_args)
@CC=$(cc) cargo xbuild $(build_args)
endif
# make user.o from binary files

@ -12,6 +12,13 @@ fn main() {
// .compile("cobj");
gen_vector_asm().unwrap();
}
if std::env::var("TARGET").unwrap().find("riscv32").is_some() {
cc::Build::new()
.file("src/arch/riscv32/compiler_rt.c")
.flag("-march=rv32ia")
.flag("-mabi=ilp32")
.compile("atomic_rt");
}
}
fn gen_vector_asm() -> Result<()> {

@ -1,14 +1,19 @@
.section .text.entry
.globl _start
_start:
lui sp, %hi(bootstacktop)
addi sp, sp, %lo(bootstacktop)
add t0, a0, 1
slli t0, t0, 16
lui sp, %hi(bootstack)
addi sp, sp, %lo(bootstack)
add sp, sp, t0
call rust_main
.section .bss
.align 12 #PGSHIFT
.global bootstack
bootstack:
.space 4096 * 16 #KSTACKSIZE
.space 4096 * 16 * 8
.global bootstacktop
bootstacktop:

@ -0,0 +1,49 @@
// http://llvm.org/docs/Atomics.html#libcalls-atomic
char __atomic_load_1(char *src) {
char res = 0;
__asm__ __volatile__("amoadd.w.rl %0, zero, (%1)" : "=r"(res) : "r"(src) : "memory");
return res;
}
short __atomic_load_2(short *src) {
short res = 0;
__asm__ __volatile__("amoadd.w.rl %0, zero, (%1)" : "=r"(res) : "r"(src) : "memory");
return res;
}
int __atomic_load_4(int *src) {
int res = 0;
__asm__ __volatile__("amoadd.w.rl %0, zero, (%1)" : "=r"(res) : "r"(src) : "memory");
return res;
}
char __atomic_store_1(char *dst, char val) {
__asm__ __volatile__("amoswap.w.aq zero, %0, (%1)" :: "r"(val), "r"(dst) : "memory");
}
int __atomic_store_4(int *dst, int val) {
__asm__ __volatile__("amoswap.w.aq zero, %0, (%1)" :: "r"(val), "r"(dst) : "memory");
}
char __atomic_compare_exchange_1(char* dst, char* expected, char desired) {
char val = 0;
__asm__ __volatile__("lr.w %0, (%1)" : "=r"(val) : "r"(dst) : "memory");
if (val == *expected) {
int sc_ret = 0;
__asm__ __volatile__("sc.w %0, %1, (%2)" : "=r"(sc_ret) : "r"(desired), "r"(dst) : "memory");
return sc_ret == 0;
}
return 0;
}
char __atomic_compare_exchange_4(int* dst, int* expected, int desired) {
int val = 0;
__asm__ __volatile__("lr.w %0, (%1)" : "=r"(val) : "r"(dst) : "memory");
if (val == *expected) {
int sc_ret = 0;
__asm__ __volatile__("sc.w %0, %1, (%2)" : "=r"(sc_ret) : "r"(desired), "r"(dst) : "memory");
return sc_ret == 0;
}
return 0;
}

@ -23,50 +23,3 @@ pub extern fn __mulsi3(mut a: u32, mut b: u32) -> u32 {
pub extern fn abort() {
loop {}
}
use core::ptr::{read, write};
#[no_mangle]
pub unsafe extern fn __atomic_load_1(src: *const u8) -> u8 {
read(src)
}
#[no_mangle]
pub unsafe extern fn __atomic_load_2(src: *const u16) -> u16 {
read(src)
}
#[no_mangle]
pub unsafe extern fn __atomic_load_4(src: *const u32) -> u32 {
read(src)
}
#[no_mangle]
pub unsafe extern fn __atomic_store_1(dst: *mut u8, val: u8) {
write(dst, val)
}
#[no_mangle]
pub unsafe extern fn __atomic_store_4(dst: *mut u32, val: u32) {
write(dst, val)
}
unsafe fn __atomic_compare_exchange<T: PartialEq>(dst: *mut T, expected: *mut T, desired: T) -> bool {
use super::interrupt;
let flags = interrupt::disable_and_store();
let val = read(dst);
let success = val == read(expected);
write(dst, if success {desired} else {val});
interrupt::restore(flags);
success
}
#[no_mangle]
pub unsafe extern fn __atomic_compare_exchange_1(dst: *mut u8, expected: *mut u8, desired: u8) -> bool {
__atomic_compare_exchange(dst, expected, desired)
}
#[no_mangle]
pub unsafe extern fn __atomic_compare_exchange_4(dst: *mut u32, expected: *mut u32, desired: u32) -> bool {
__atomic_compare_exchange(dst, expected, desired)
}

@ -0,0 +1,14 @@
// Physical address available on THINPAD:
// [0x80000000, 0x80800000]
const P2_SIZE: usize = 1 << 22;
const P2_MASK: usize = 0x3ff << 22;
pub const RECURSIVE_PAGE_PML4: usize = 0x3fe;
pub const KERNEL_OFFSET: usize = 0;
pub const KERNEL_PML4: usize = 0x8000_0000 >> 22;
pub const KERNEL_HEAP_OFFSET: usize = 0x8020_0000;
pub const KERNEL_HEAP_SIZE: usize = 0x0020_0000;
pub const MEMORY_OFFSET: usize = 0x8000_0000;
pub const MEMORY_END: usize = 0x8080_0000;
pub const USER_STACK_OFFSET: usize = 0x70000000;
pub const USER_STACK_SIZE: usize = 0x10000;
pub const USER32_STACK_OFFSET: usize = USER_STACK_OFFSET;

@ -3,6 +3,8 @@ use memory::{active_table, FRAME_ALLOCATOR, init_heap, MemoryArea, MemoryAttr, M
use super::riscv::{addr::*, register::sstatus};
use ucore_memory::PAGE_SIZE;
// static mut KERNEL_MS: Option<MemorySet> = None;
pub fn init() {
#[repr(align(4096))]
struct PageData([u8; PAGE_SIZE]);

@ -7,14 +7,34 @@ pub mod timer;
pub mod paging;
pub mod memory;
pub mod compiler_rt;
pub mod consts;
pub mod smp;
use self::smp::*;
fn others_main(hartid: usize) -> ! {
println!("hart {} is booting", hartid);
loop { }
}
#[no_mangle]
pub extern fn rust_main() -> ! {
println!("Hello RISCV! {}", 123);
pub extern fn rust_main(hartid: usize, dtb: usize, hart_mask: usize) -> ! {
unsafe { set_cpu_id(hartid); }
if hartid != 0 {
while unsafe { !has_started(hartid) } { }
others_main(hartid);
// others_main should not return
}
println!("Hello RISCV! in hart {}, {}, {}", hartid, dtb, hart_mask);
::logging::init();
interrupt::init();
memory::init();
timer::init();
unsafe { start_others(hart_mask); }
::kmain();
}

@ -0,0 +1,31 @@
use consts::MAX_CPU_NUM;
use core::ptr::{read_volatile, write_volatile};
use memory::*;
static mut STARTED: [bool; MAX_CPU_NUM] = [false; MAX_CPU_NUM];
pub unsafe fn set_cpu_id(cpu_id: usize) {
unsafe {
asm!("mv tp, $0" : : "r"(cpu_id));
}
}
pub unsafe fn get_cpu_id() -> usize {
let mut cpu_id = 0;
unsafe {
asm!("mv $0, tp" : : "r" (cpu_id));
}
cpu_id
}
pub unsafe fn has_started(cpu_id: usize) -> bool {
read_volatile(&STARTED[cpu_id])
}
pub unsafe fn start_others(hart_mask: usize) {
for cpu_id in 0..MAX_CPU_NUM {
if (hart_mask >> cpu_id) & 1 != 0 {
write_volatile(&mut STARTED[cpu_id], true);
}
}
}

@ -0,0 +1,97 @@
// Copy from Redox consts.rs:
// Because the memory map is so important to not be aliased, it is defined here, in one place
// The lower 256 PML4 entries are reserved for userspace
// Each PML4 entry references up to 512 GB of memory
// The top (511) PML4 is reserved for recursive mapping
// The second from the top (510) PML4 is reserved for the kernel
/// The size of a single PML4
pub const PML4_SIZE: usize = 0x0000_0080_0000_0000;
pub const PML4_MASK: usize = 0x0000_ff80_0000_0000;
/// Offset of recursive paging
pub const RECURSIVE_PAGE_OFFSET: usize = (-(PML4_SIZE as isize)) as usize;
pub const RECURSIVE_PAGE_PML4: usize = (RECURSIVE_PAGE_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset of kernel
pub const KERNEL_OFFSET: usize = RECURSIVE_PAGE_OFFSET - PML4_SIZE;
pub const KERNEL_PML4: usize = (KERNEL_OFFSET & PML4_MASK) / PML4_SIZE;
pub const KERNEL_SIZE: usize = PML4_SIZE;
/// Offset to kernel heap
pub const KERNEL_HEAP_OFFSET: usize = KERNEL_OFFSET - PML4_SIZE;
pub const KERNEL_HEAP_PML4: usize = (KERNEL_HEAP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Size of kernel heap
pub const KERNEL_HEAP_SIZE: usize = 8 * 1024 * 1024; // 8 MB
pub const MEMORY_OFFSET: usize = 0;
/// Offset to kernel percpu variables
//TODO: Use 64-bit fs offset to enable this pub const KERNEL_PERCPU_OFFSET: usize = KERNEL_HEAP_OFFSET - PML4_SIZE;
pub const KERNEL_PERCPU_OFFSET: usize = 0xC000_0000;
/// Size of kernel percpu variables
pub const KERNEL_PERCPU_SIZE: usize = 64 * 1024; // 64 KB
/// Offset to user image
pub const USER_OFFSET: usize = 0;
pub const USER_PML4: usize = (USER_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user TCB
pub const USER_TCB_OFFSET: usize = 0xB000_0000;
/// Offset to user arguments
pub const USER_ARG_OFFSET: usize = USER_OFFSET + PML4_SIZE / 2;
/// Offset to user heap
pub const USER_HEAP_OFFSET: usize = USER_OFFSET + PML4_SIZE;
pub const USER_HEAP_PML4: usize = (USER_HEAP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user grants
pub const USER_GRANT_OFFSET: usize = USER_HEAP_OFFSET + PML4_SIZE;
pub const USER_GRANT_PML4: usize = (USER_GRANT_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user stack
pub const USER_STACK_OFFSET: usize = USER_GRANT_OFFSET + PML4_SIZE;
pub const USER32_STACK_OFFSET: usize = 0xB000_0000;
pub const USER_STACK_PML4: usize = (USER_STACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Size of user stack
pub const USER_STACK_SIZE: usize = 1024 * 1024; // 1 MB
/// Offset to user sigstack
pub const USER_SIGSTACK_OFFSET: usize = USER_STACK_OFFSET + PML4_SIZE;
pub const USER_SIGSTACK_PML4: usize = (USER_SIGSTACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Size of user sigstack
pub const USER_SIGSTACK_SIZE: usize = 256 * 1024; // 256 KB
/// Offset to user TLS
pub const USER_TLS_OFFSET: usize = USER_SIGSTACK_OFFSET + PML4_SIZE;
pub const USER_TLS_PML4: usize = (USER_TLS_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary image (used when cloning)
pub const USER_TMP_OFFSET: usize = USER_TLS_OFFSET + PML4_SIZE;
pub const USER_TMP_PML4: usize = (USER_TMP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary heap (used when cloning)
pub const USER_TMP_HEAP_OFFSET: usize = USER_TMP_OFFSET + PML4_SIZE;
pub const USER_TMP_HEAP_PML4: usize = (USER_TMP_HEAP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary page for grants
pub const USER_TMP_GRANT_OFFSET: usize = USER_TMP_HEAP_OFFSET + PML4_SIZE;
pub const USER_TMP_GRANT_PML4: usize = (USER_TMP_GRANT_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary stack (used when cloning)
pub const USER_TMP_STACK_OFFSET: usize = USER_TMP_GRANT_OFFSET + PML4_SIZE;
pub const USER_TMP_STACK_PML4: usize = (USER_TMP_STACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary sigstack (used when cloning)
pub const USER_TMP_SIGSTACK_OFFSET: usize = USER_TMP_STACK_OFFSET + PML4_SIZE;
pub const USER_TMP_SIGSTACK_PML4: usize = (USER_TMP_SIGSTACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary tls (used when cloning)
pub const USER_TMP_TLS_OFFSET: usize = USER_TMP_SIGSTACK_OFFSET + PML4_SIZE;
pub const USER_TMP_TLS_PML4: usize = (USER_TMP_TLS_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset for usage in other temporary pages
pub const USER_TMP_MISC_OFFSET: usize = USER_TMP_TLS_OFFSET + PML4_SIZE;
pub const USER_TMP_MISC_PML4: usize = (USER_TMP_MISC_OFFSET & PML4_MASK) / PML4_SIZE;

@ -1,7 +1,7 @@
use consts::KERNEL_OFFSET;
use core::ptr::Unique;
use core::fmt;
use spin::Mutex;
use sync::SpinLock as Mutex;
use volatile::Volatile;
use x86_64::instructions::port::Port;
use logging::Color;

@ -14,6 +14,7 @@ pub mod gdt;
pub mod idt;
pub mod memory;
pub mod io;
pub mod consts;
static AP_CAN_INIT: AtomicBool = ATOMIC_BOOL_INIT;

@ -1,128 +1,6 @@
#![allow(dead_code)]
#[cfg(target_arch = "riscv32")]
pub use self::riscv::*;
#[cfg(target_arch = "x86_64")]
pub use self::x86_64::*;
pub use arch::consts::*;
pub const MAX_CPU_NUM: usize = 8;
pub const MAX_PROCESS_NUM: usize = 48;
#[cfg(target_arch = "riscv32")]
mod riscv {
// Physical address available on THINPAD:
// [0x80000000, 0x80800000]
const P2_SIZE: usize = 1 << 22;
const P2_MASK: usize = 0x3ff << 22;
pub const RECURSIVE_PAGE_PML4: usize = 0x3fe;
pub const KERNEL_OFFSET: usize = 0;
pub const KERNEL_PML4: usize = 0x8000_0000 >> 22;
pub const KERNEL_HEAP_OFFSET: usize = 0x8020_0000;
pub const KERNEL_HEAP_SIZE: usize = 0x0020_0000;
pub const MEMORY_OFFSET: usize = 0x8000_0000;
pub const MEMORY_END: usize = 0x8080_0000;
pub const USER_STACK_OFFSET: usize = 0x70000000;
pub const USER_STACK_SIZE: usize = 0x10000;
pub const USER32_STACK_OFFSET: usize = USER_STACK_OFFSET;
}
#[cfg(target_arch = "x86_64")]
mod x86_64 {
// Copy from Redox consts.rs:
// Because the memory map is so important to not be aliased, it is defined here, in one place
// The lower 256 PML4 entries are reserved for userspace
// Each PML4 entry references up to 512 GB of memory
// The top (511) PML4 is reserved for recursive mapping
// The second from the top (510) PML4 is reserved for the kernel
/// The size of a single PML4
pub const PML4_SIZE: usize = 0x0000_0080_0000_0000;
pub const PML4_MASK: usize = 0x0000_ff80_0000_0000;
/// Offset of recursive paging
pub const RECURSIVE_PAGE_OFFSET: usize = (-(PML4_SIZE as isize)) as usize;
pub const RECURSIVE_PAGE_PML4: usize = (RECURSIVE_PAGE_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset of kernel
pub const KERNEL_OFFSET: usize = RECURSIVE_PAGE_OFFSET - PML4_SIZE;
pub const KERNEL_PML4: usize = (KERNEL_OFFSET & PML4_MASK) / PML4_SIZE;
pub const KERNEL_SIZE: usize = PML4_SIZE;
/// Offset to kernel heap
pub const KERNEL_HEAP_OFFSET: usize = KERNEL_OFFSET - PML4_SIZE;
pub const KERNEL_HEAP_PML4: usize = (KERNEL_HEAP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Size of kernel heap
pub const KERNEL_HEAP_SIZE: usize = 8 * 1024 * 1024; // 8 MB
pub const MEMORY_OFFSET: usize = 0;
/// Offset to kernel percpu variables
//TODO: Use 64-bit fs offset to enable this pub const KERNEL_PERCPU_OFFSET: usize = KERNEL_HEAP_OFFSET - PML4_SIZE;
pub const KERNEL_PERCPU_OFFSET: usize = 0xC000_0000;
/// Size of kernel percpu variables
pub const KERNEL_PERCPU_SIZE: usize = 64 * 1024; // 64 KB
/// Offset to user image
pub const USER_OFFSET: usize = 0;
pub const USER_PML4: usize = (USER_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user TCB
pub const USER_TCB_OFFSET: usize = 0xB000_0000;
/// Offset to user arguments
pub const USER_ARG_OFFSET: usize = USER_OFFSET + PML4_SIZE / 2;
/// Offset to user heap
pub const USER_HEAP_OFFSET: usize = USER_OFFSET + PML4_SIZE;
pub const USER_HEAP_PML4: usize = (USER_HEAP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user grants
pub const USER_GRANT_OFFSET: usize = USER_HEAP_OFFSET + PML4_SIZE;
pub const USER_GRANT_PML4: usize = (USER_GRANT_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user stack
pub const USER_STACK_OFFSET: usize = USER_GRANT_OFFSET + PML4_SIZE;
pub const USER32_STACK_OFFSET: usize = 0xB000_0000;
pub const USER_STACK_PML4: usize = (USER_STACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Size of user stack
pub const USER_STACK_SIZE: usize = 1024 * 1024; // 1 MB
/// Offset to user sigstack
pub const USER_SIGSTACK_OFFSET: usize = USER_STACK_OFFSET + PML4_SIZE;
pub const USER_SIGSTACK_PML4: usize = (USER_SIGSTACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Size of user sigstack
pub const USER_SIGSTACK_SIZE: usize = 256 * 1024; // 256 KB
/// Offset to user TLS
pub const USER_TLS_OFFSET: usize = USER_SIGSTACK_OFFSET + PML4_SIZE;
pub const USER_TLS_PML4: usize = (USER_TLS_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary image (used when cloning)
pub const USER_TMP_OFFSET: usize = USER_TLS_OFFSET + PML4_SIZE;
pub const USER_TMP_PML4: usize = (USER_TMP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary heap (used when cloning)
pub const USER_TMP_HEAP_OFFSET: usize = USER_TMP_OFFSET + PML4_SIZE;
pub const USER_TMP_HEAP_PML4: usize = (USER_TMP_HEAP_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary page for grants
pub const USER_TMP_GRANT_OFFSET: usize = USER_TMP_HEAP_OFFSET + PML4_SIZE;
pub const USER_TMP_GRANT_PML4: usize = (USER_TMP_GRANT_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary stack (used when cloning)
pub const USER_TMP_STACK_OFFSET: usize = USER_TMP_GRANT_OFFSET + PML4_SIZE;
pub const USER_TMP_STACK_PML4: usize = (USER_TMP_STACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary sigstack (used when cloning)
pub const USER_TMP_SIGSTACK_OFFSET: usize = USER_TMP_STACK_OFFSET + PML4_SIZE;
pub const USER_TMP_SIGSTACK_PML4: usize = (USER_TMP_SIGSTACK_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset to user temporary tls (used when cloning)
pub const USER_TMP_TLS_OFFSET: usize = USER_TMP_SIGSTACK_OFFSET + PML4_SIZE;
pub const USER_TMP_TLS_PML4: usize = (USER_TMP_TLS_OFFSET & PML4_MASK) / PML4_SIZE;
/// Offset for usage in other temporary pages
pub const USER_TMP_MISC_OFFSET: usize = USER_TMP_TLS_OFFSET + PML4_SIZE;
pub const USER_TMP_MISC_PML4: usize = (USER_TMP_MISC_OFFSET & PML4_MASK) / PML4_SIZE;
}

@ -2,7 +2,7 @@ use simple_filesystem::*;
use alloc::boxed::Box;
#[cfg(target_arch = "x86_64")]
use arch::driver::ide;
use spin::Mutex;
use sync::SpinLock as Mutex;
// Hard link user program
#[cfg(target_arch = "riscv32")]

@ -1,5 +1,10 @@
use core::fmt;
use log::{self, Level, LevelFilter, Log, Metadata, Record};
use sync::SpinLock as Mutex;
lazy_static! {
static ref log_mutex: Mutex<()> = Mutex::new(());
}
pub fn init() {
static LOGGER: SimpleLogger = SimpleLogger;
@ -38,11 +43,13 @@ macro_rules! with_color {
fn print_in_color(args: fmt::Arguments, color: Color) {
use arch::io;
let mutex = log_mutex.lock();
io::putfmt(with_color!(args, color));
}
pub fn print(args: fmt::Arguments) {
use arch::io;
let mutex = log_mutex.lock();
io::putfmt(args);
}

@ -1,7 +1,8 @@
pub use arch::paging::*;
use bit_allocator::{BitAlloc, BitAlloc4K, BitAlloc64K};
use consts::MEMORY_OFFSET;
use spin::{Mutex, MutexGuard};
use sync::{MutexGuard, Spin};
use sync::SpinLock as Mutex;
use super::HEAP_ALLOCATOR;
use ucore_memory::{*, paging::PageTable};
use ucore_memory::cow::CowExt;
@ -48,7 +49,7 @@ lazy_static! {
}
/// The only way to get active page table
pub fn active_table() -> MutexGuard<'static, CowExt<ActivePageTable>> {
pub fn active_table() -> MutexGuard<'static, CowExt<ActivePageTable>, Spin> {
ACTIVE_TABLE.lock()
}

@ -0,0 +1,4 @@
pub struct cpu {
pub id: usize
}

@ -0,0 +1,44 @@
//! RISCV atomic is not currently supported by Rust.
//! This is a ugly workaround.
use core::cell::UnsafeCell;
extern {
fn __atomic_load_4(src: *const u32) -> u32;
fn __atomic_store_4(dst: *mut u32, val: u32);
fn __atomic_compare_exchange_4(dst: *mut u32, expected: *mut u32, desired: u32) -> bool;
}
pub struct AtomicLock
{
lock: UnsafeCell<u32>
}
impl AtomicLock
{
pub fn new() -> Self {
AtomicLock {
lock: UnsafeCell::new(0)
}
}
/// Returns 1 if lock is acquired
pub fn try_lock(&self) -> bool {
let mut expected: u32 = 0;
unsafe {
__atomic_compare_exchange_4(self.lock.get(), &mut expected as *mut u32, 1)
}
}
pub fn load(&self) -> bool {
unsafe {
__atomic_load_4(self.lock.get()) == 1
}
}
pub fn store(&self) {
unsafe {
__atomic_store_4(self.lock.get(), 0);
}
}
}

@ -0,0 +1,31 @@
use core::sync::atomic::{AtomicBool, Ordering};
pub struct AtomicLock
{
lock: AtomicBool
}
impl AtomicLock
{
pub fn new() -> AtomicLock {
AtomicLock {
lock: AtomicBool::new(false)
}
}
pub fn try_lock(&self) -> bool {
self.lock.compare_and_swap(false, true, Ordering::Acquire) == false
}
pub fn load(&self) -> bool {
self.lock.load(Ordering::Relaxed)
}
pub fn store(&self) {
self.lock.store(false, Ordering::Release);
}
}
pub const ATOMIC_LOCK_INIT: AtomicLock = AtomicLock {
lock: AtomicBool::new(false)
};

@ -53,6 +53,15 @@ pub use self::condvar::*;
pub use self::mutex::*;
pub use self::semaphore::*;
#[allow(dead_code)]
#[cfg(target_arch = "x86_64")]
#[path = "arch/x86_64/atomic_lock.rs"]
pub mod atomic_lock;
#[cfg(target_arch = "riscv32")]
#[path = "arch/riscv32/atomic_lock.rs"]
pub mod atomic_lock;
mod mutex;
mod condvar;
mod semaphore;

@ -30,8 +30,8 @@ use arch::interrupt;
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::sync::atomic::{ATOMIC_BOOL_INIT, AtomicBool, Ordering};
use super::Condvar;
use super::atomic_lock::AtomicLock;
pub type SpinLock<T> = Mutex<T, Spin>;
pub type SpinNoIrqLock<T> = Mutex<T, SpinNoIrq>;
@ -39,7 +39,7 @@ pub type ThreadLock<T> = Mutex<T, Condvar>;
pub struct Mutex<T: ?Sized, S: MutexSupport>
{
lock: AtomicBool,
lock: AtomicLock,
support: S,
data: UnsafeCell<T>,
}
@ -78,7 +78,7 @@ impl<T, S: MutexSupport> Mutex<T, S>
/// ```
pub fn new(user_data: T) -> Mutex<T, S> {
Mutex {
lock: ATOMIC_BOOL_INIT,
lock: AtomicLock::new(),
data: UnsafeCell::new(user_data),
support: S::new(),
}
@ -96,9 +96,9 @@ impl<T, S: MutexSupport> Mutex<T, S>
impl<T: ?Sized, S: MutexSupport> Mutex<T, S>
{
fn obtain_lock(&self) {
while self.lock.compare_and_swap(false, true, Ordering::Acquire) != false {
while !self.lock.try_lock() {
// Wait until the lock looks unlocked before retrying
while self.lock.load(Ordering::Relaxed) {
while self.lock.load() {
self.support.cpu_relax();
}
}
@ -137,14 +137,14 @@ impl<T: ?Sized, S: MutexSupport> Mutex<T, S>
///
/// If the lock isn't held, this is a no-op.
pub unsafe fn force_unlock(&self) {
self.lock.store(false, Ordering::Release);
self.lock.store();
}
/// Tries to lock the mutex. If it is already locked, it will return None. Otherwise it returns
/// a guard within Some.
pub fn try_lock(&self) -> Option<MutexGuard<T, S>> {
let support_guard = S::before_lock();
if self.lock.compare_and_swap(false, true, Ordering::Acquire) == false {
if self.lock.try_lock() {
Some(MutexGuard {
mutex: self,
support_guard,
@ -186,7 +186,7 @@ impl<'a, T: ?Sized, S: MutexSupport> Drop for MutexGuard<'a, T, S>
{
/// The dropping of the MutexGuard will release the lock it was created from.
fn drop(&mut self) {
self.mutex.lock.store(false, Ordering::Release);
self.mutex.lock.store();
self.mutex.support.after_unlock();
}
}

@ -48,7 +48,7 @@ void boot_other_hart(uintptr_t unused __attribute__((unused)))
}
}
enter_supervisor_mode(entry, hartid, dtb_output());
enter_supervisor_mode(entry, hartid, dtb_output(), ~disabled_hart_mask & hart_mask);
}
void boot_loader(uintptr_t dtb)

@ -4084,8 +4084,8 @@ fi
case "${BUILD_32BIT}" in
yes|default)
echo "Building 32-bit pk"
CFLAGS="$default_CFLAGS -march=rv32i -mabi=ilp32"
LDFLAGS="-march=rv32i -mabi=ilp32"
CFLAGS="$default_CFLAGS -march=rv32iac -mabi=ilp32"
LDFLAGS="-march=rv32iac -mabi=ilp32"
install_subdir="riscv32-unknown-elf"
;;
*)

@ -88,8 +88,8 @@ AC_ARG_ENABLE([32bit],
case "${BUILD_32BIT}" in
yes|default)
echo "Building 32-bit pk"
CFLAGS="$default_CFLAGS -march=rv32i -mabi=ilp32"
LDFLAGS="-march=rv32i -mabi=ilp32"
CFLAGS="$default_CFLAGS -march=rv32iac -mabi=ilp32"
LDFLAGS="-march=rv32iac -mabi=ilp32"
install_subdir="riscv32-unknown-elf"
;;
*)

@ -172,7 +172,7 @@ void init_other_hart(uintptr_t hartid, uintptr_t dtb)
boot_other_hart(dtb);
}
void enter_supervisor_mode(void (*fn)(uintptr_t), uintptr_t arg0, uintptr_t arg1)
void enter_supervisor_mode(void (*fn)(uintptr_t), uintptr_t arg0, uintptr_t arg1, uintptr_t arg2)
{
// Set up a PMP to permit access to all of memory.
// Ignore the illegal-instruction trap if PMPs aren't supported.
@ -194,6 +194,7 @@ void enter_supervisor_mode(void (*fn)(uintptr_t), uintptr_t arg0, uintptr_t arg1
register uintptr_t a0 asm ("a0") = arg0;
register uintptr_t a1 asm ("a1") = arg1;
asm volatile ("mret" : : "r" (a0), "r" (a1));
register uintptr_t a2 asm ("a2") = arg2;
asm volatile ("mret" : : "r" (a0), "r" (a1), "r" (a2));
__builtin_unreachable();
}

@ -63,7 +63,7 @@ void putstring(const char* s);
#define assert(x) ({ if (!(x)) die("assertion failed: %s", #x); })
#define die(str, ...) ({ printm("%s:%d: " str "\n", __FILE__, __LINE__, ##__VA_ARGS__); poweroff(-1); })
void enter_supervisor_mode(void (*fn)(uintptr_t), uintptr_t arg0, uintptr_t arg1)
void enter_supervisor_mode(void (*fn)(uintptr_t), uintptr_t arg0, uintptr_t arg1, uintptr_t arg2)
__attribute__((noreturn));
void boot_loader(uintptr_t dtb);
void boot_other_hart(uintptr_t dtb);

Loading…
Cancel
Save