You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

512 lines
16 KiB

use alloc::{boxed::Box, collections::BTreeMap, string::String, sync::Arc, sync::Weak, vec::Vec};
use core::fmt;
use core::str;
use log::*;
use rcore_memory::PAGE_SIZE;
use rcore_thread::Tid;
use spin::RwLock;
use xmas_elf::{
header,
program::{Flags, SegmentData, Type},
ElfFile,
};
use crate::arch::interrupt::{Context, TrapFrame};
use crate::fs::{FileHandle, FileLike, OpenOptions, FOLLOW_MAX_DEPTH};
use crate::memory::{
ByFrame, Delay, File, GlobalFrameAlloc, KernelStack, MemoryAttr, MemorySet, Read,
};
use crate::sync::{Condvar, SpinNoIrqLock as Mutex};
use super::abi::{self, ProcInitInfo};
use core::mem::uninitialized;
use rcore_fs::vfs::INode;
pub struct Thread {
context: Context,
kstack: KernelStack,
/// Kernel performs futex wake when thread exits.
/// Ref: [http://man7.org/linux/man-pages/man2/set_tid_address.2.html]
pub clear_child_tid: usize,
// This is same as `proc.vm`
pub vm: Arc<Mutex<MemorySet>>,
pub proc: Arc<Mutex<Process>>,
}
/// Pid type
/// For strong type separation
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct Pid(usize);
impl Pid {
pub fn get(&self) -> usize {
self.0
}
/// Return whether this pid represents the init process
pub fn is_init(&self) -> bool {
self.0 == 0
}
}
impl fmt::Display for Pid {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
pub struct Process {
// resources
pub vm: Arc<Mutex<MemorySet>>,
pub files: BTreeMap<usize, FileLike>,
pub cwd: String,
pub exec_path: String,
futexes: BTreeMap<usize, Arc<Condvar>>,
// relationship
pub pid: Pid, // i.e. tgid, usually the tid of first thread
pub parent: Option<Arc<Mutex<Process>>>,
pub children: Vec<Weak<Mutex<Process>>>,
pub threads: Vec<Tid>, // threads in the same process
// for waiting child
pub child_exit: Arc<Condvar>, // notified when the a child process is going to terminate
pub child_exit_code: BTreeMap<usize, usize>, // child process store its exit code here
}
/// Records the mapping between pid and Process struct.
lazy_static! {
pub static ref PROCESSES: RwLock<BTreeMap<usize, Weak<Mutex<Process>>>> =
RwLock::new(BTreeMap::new());
}
/// Let `rcore_thread` can switch between our `Thread`
impl rcore_thread::Context for Thread {
unsafe fn switch_to(&mut self, target: &mut rcore_thread::Context) {
use core::mem::transmute;
let (target, _): (&mut Thread, *const ()) = transmute(target);
self.context.switch(&mut target.context);
}
fn set_tid(&mut self, tid: Tid) {
let mut proc = self.proc.lock();
// add it to threads
proc.threads.push(tid);
}
}
impl Thread {
/// Make a struct for the init thread
pub unsafe fn new_init() -> Box<Thread> {
Box::new(Thread {
context: Context::null(),
// safety: other fields will never be used
..core::mem::uninitialized()
})
}
/// Make a new kernel thread starting from `entry` with `arg`
pub fn new_kernel(entry: extern "C" fn(usize) -> !, arg: usize) -> Box<Thread> {
let vm = MemorySet::new();
let vm_token = vm.token();
let vm = Arc::new(Mutex::new(vm));
let kstack = KernelStack::new();
Box::new(Thread {
context: unsafe { Context::new_kernel_thread(entry, arg, kstack.top(), vm_token) },
kstack,
clear_child_tid: 0,
vm: vm.clone(),
// TODO: kernel thread should not have a process
proc: Process {
vm,
files: BTreeMap::default(),
cwd: String::from("/"),
exec_path: String::new(),
futexes: BTreeMap::default(),
pid: Pid(0),
parent: None,
children: Vec::new(),
threads: Vec::new(),
child_exit: Arc::new(Condvar::new()),
child_exit_code: BTreeMap::new(),
}
.add_to_table(),
})
}
/// Construct virtual memory of a new user process from ELF `data`.
/// Return `(MemorySet, entry_point, ustack_top)`
pub fn new_user_vm(
inode: &Arc<INode>,
exec_path: &str,
mut args: Vec<String>,
envs: Vec<String>,
) -> Result<(MemorySet, usize, usize), &'static str> {
// Read ELF header
// 0x3c0: magic number from ld-musl.so
let mut data: [u8; 0x3c0] = unsafe { uninitialized() };
inode
.read_at(0, &mut data)
.map_err(|_| "failed to read from INode")?;
// Parse ELF
let elf = ElfFile::new(&data)?;
// Check ELF type
match elf.header.pt2.type_().as_type() {
header::Type::Executable => {}
header::Type::SharedObject => {}
_ => return Err("ELF is not executable or shared object"),
}
// Check ELF arch
match elf.header.pt2.machine().as_machine() {
#[cfg(target_arch = "x86_64")]
header::Machine::X86_64 => {}
#[cfg(target_arch = "aarch64")]
header::Machine::AArch64 => {}
#[cfg(any(target_arch = "riscv32", target_arch = "riscv64"))]
header::Machine::Other(243) => {}
#[cfg(target_arch = "mips")]
header::Machine::Mips => {}
_ => return Err("invalid ELF arch"),
}
// Check interpreter (for dynamic link)
if let Ok(loader_path) = elf.get_interpreter() {
// assuming absolute path
let inode = crate::fs::ROOT_INODE
.lookup_follow(loader_path, FOLLOW_MAX_DEPTH)
.map_err(|_| "interpreter not found")?;
// modify args for loader
args[0] = exec_path.into();
args.insert(0, loader_path.into());
// Elf loader should not have INTERP
// No infinite loop
return Thread::new_user_vm(&inode, exec_path, args, envs);
}
// Make page table
let mut vm = elf.make_memory_set(inode);
// User stack
use crate::consts::{USER_STACK_OFFSET, USER_STACK_SIZE};
let mut ustack_top = {
let ustack_buttom = USER_STACK_OFFSET;
let ustack_top = USER_STACK_OFFSET + USER_STACK_SIZE;
vm.push(
ustack_buttom,
ustack_top - PAGE_SIZE * 4,
MemoryAttr::default().user(),
Delay::new(GlobalFrameAlloc),
"user_stack_delay",
);
// We are going to write init info now. So map the last 4 pages eagerly.
vm.push(
ustack_top - PAGE_SIZE * 4,
ustack_top,
MemoryAttr::default().user(),
ByFrame::new(GlobalFrameAlloc),
"user_stack",
);
ustack_top
};
// Make init info
let init_info = ProcInitInfo {
args,
envs,
auxv: {
let mut map = BTreeMap::new();
if let Some(phdr_vaddr) = elf.get_phdr_vaddr() {
map.insert(abi::AT_PHDR, phdr_vaddr as usize);
}
map.insert(abi::AT_PHENT, elf.header.pt2.ph_entry_size() as usize);
map.insert(abi::AT_PHNUM, elf.header.pt2.ph_count() as usize);
map.insert(abi::AT_PAGESZ, PAGE_SIZE);
map
},
};
unsafe {
vm.with(|| ustack_top = init_info.push_at(ustack_top));
}
trace!("{:#x?}", vm);
let entry_addr = elf.header.pt2.entry_point() as usize;
Ok((vm, entry_addr, ustack_top))
}
/// Make a new user process from ELF `data`
pub fn new_user(
inode: &Arc<INode>,
exec_path: &str,
args: Vec<String>,
envs: Vec<String>,
) -> Box<Thread> {
let (vm, entry_addr, ustack_top) = Self::new_user_vm(inode, exec_path, args, envs).unwrap();
let vm_token = vm.token();
let vm = Arc::new(Mutex::new(vm));
let kstack = KernelStack::new();
let mut files = BTreeMap::new();
files.insert(
0,
FileLike::File(FileHandle::new(
crate::fs::STDIN.clone(),
OpenOptions {
read: true,
write: false,
append: false,
nonblock: false,
},
String::from("stdin"),
)),
);
files.insert(
1,
FileLike::File(FileHandle::new(
crate::fs::STDOUT.clone(),
OpenOptions {
read: false,
write: true,
append: false,
nonblock: false,
},
String::from("stdout"),
)),
);
files.insert(
2,
FileLike::File(FileHandle::new(
crate::fs::STDOUT.clone(),
OpenOptions {
read: false,
write: true,
append: false,
nonblock: false,
},
String::from("stderr"),
)),
);
Box::new(Thread {
context: unsafe {
Context::new_user_thread(entry_addr, ustack_top, kstack.top(), vm_token)
},
kstack,
clear_child_tid: 0,
vm: vm.clone(),
proc: Process {
vm,
files,
cwd: String::from("/"),
exec_path: String::from(exec_path),
futexes: BTreeMap::default(),
pid: Pid(0),
parent: None,
children: Vec::new(),
threads: Vec::new(),
child_exit: Arc::new(Condvar::new()),
child_exit_code: BTreeMap::new(),
}
.add_to_table(),
})
}
/// Fork a new process from current one
pub fn fork(&self, tf: &TrapFrame) -> Box<Thread> {
let kstack = KernelStack::new();
let vm = self.vm.lock().clone();
let vm_token = vm.token();
let vm = Arc::new(Mutex::new(vm));
let context = unsafe { Context::new_fork(tf, kstack.top(), vm_token) };
let mut proc = self.proc.lock();
let new_proc = Process {
vm: vm.clone(),
files: proc.files.clone(),
cwd: proc.cwd.clone(),
exec_path: proc.exec_path.clone(),
futexes: BTreeMap::default(),
pid: Pid(0),
parent: Some(self.proc.clone()),
children: Vec::new(),
threads: Vec::new(),
child_exit: Arc::new(Condvar::new()),
child_exit_code: BTreeMap::new(),
}
.add_to_table();
// link to parent
proc.children.push(Arc::downgrade(&new_proc));
Box::new(Thread {
context,
kstack,
clear_child_tid: 0,
vm,
proc: new_proc,
})
}
/// Create a new thread in the same process.
pub fn clone(
&self,
tf: &TrapFrame,
stack_top: usize,
tls: usize,
clear_child_tid: usize,
) -> Box<Thread> {
let kstack = KernelStack::new();
let vm_token = self.vm.lock().token();
Box::new(Thread {
context: unsafe { Context::new_clone(tf, stack_top, kstack.top(), vm_token, tls) },
kstack,
clear_child_tid,
vm: self.vm.clone(),
proc: self.proc.clone(),
})
}
}
impl Process {
/// Assign a pid and put itself to global process table.
fn add_to_table(mut self) -> Arc<Mutex<Self>> {
let mut process_table = PROCESSES.write();
// assign pid
let pid = (0..)
.find(|i| match process_table.get(i) {
Some(p) if p.upgrade().is_some() => false,
_ => true,
})
.unwrap();
self.pid = Pid(pid);
// put to process table
let self_ref = Arc::new(Mutex::new(self));
process_table.insert(pid, Arc::downgrade(&self_ref));
self_ref
}
fn get_free_fd(&self) -> usize {
(0..).find(|i| !self.files.contains_key(i)).unwrap()
}
/// Add a file to the process, return its fd.
pub fn add_file(&mut self, file_like: FileLike) -> usize {
let fd = self.get_free_fd();
self.files.insert(fd, file_like);
fd
}
pub fn get_futex(&mut self, uaddr: usize) -> Arc<Condvar> {
if !self.futexes.contains_key(&uaddr) {
self.futexes.insert(uaddr, Arc::new(Condvar::new()));
}
self.futexes.get(&uaddr).unwrap().clone()
}
}
trait ToMemoryAttr {
fn to_attr(&self) -> MemoryAttr;
}
impl ToMemoryAttr for Flags {
fn to_attr(&self) -> MemoryAttr {
let mut flags = MemoryAttr::default().user();
if self.is_execute() {
flags = flags.execute();
}
if !self.is_write() {
flags = flags.readonly();
}
flags
}
}
/// Helper functions to process ELF file
trait ElfExt {
/// Generate a MemorySet according to the ELF file.
fn make_memory_set(&self, inode: &Arc<INode>) -> MemorySet;
/// Get interpreter string if it has.
fn get_interpreter(&self) -> Result<&str, &str>;
/// Get virtual address of PHDR section if it has.
fn get_phdr_vaddr(&self) -> Option<u64>;
}
impl ElfExt for ElfFile<'_> {
fn make_memory_set(&self, inode: &Arc<INode>) -> MemorySet {
debug!("creating MemorySet from ELF");
let mut ms = MemorySet::new();
for ph in self.program_iter() {
if ph.get_type() != Ok(Type::Load) {
continue;
}
ms.push(
ph.virtual_addr() as usize,
ph.virtual_addr() as usize + ph.mem_size() as usize,
ph.flags().to_attr(),
File {
file: INodeForMap(inode.clone()),
mem_start: ph.virtual_addr() as usize,
file_start: ph.offset() as usize,
file_end: ph.offset() as usize + ph.file_size() as usize,
allocator: GlobalFrameAlloc,
},
"elf",
);
}
ms
}
fn get_interpreter(&self) -> Result<&str, &str> {
let header = self
.program_iter()
.filter(|ph| ph.get_type() == Ok(Type::Interp))
.next()
.ok_or("no interp header")?;
let mut data = match header.get_data(self)? {
SegmentData::Undefined(data) => data,
_ => unreachable!(),
};
// skip NULL
while let Some(0) = data.last() {
data = &data[..data.len() - 1];
}
let path = str::from_utf8(data).map_err(|_| "failed to convert to utf8")?;
Ok(path)
}
fn get_phdr_vaddr(&self) -> Option<u64> {
if let Some(phdr) = self
.program_iter()
.find(|ph| ph.get_type() == Ok(Type::Phdr))
{
// if phdr exists in program header, use it
Some(phdr.virtual_addr())
} else if let Some(elf_addr) = self
.program_iter()
.find(|ph| ph.get_type() == Ok(Type::Load) && ph.offset() == 0)
{
// otherwise, check if elf is loaded from the beginning, then phdr can be inferred.
Some(elf_addr.virtual_addr() + self.header.pt2.ph_offset())
} else {
warn!("elf: no phdr found, tls might not work");
None
}
}
}
#[derive(Clone)]
pub struct INodeForMap(pub Arc<INode>);
impl Read for INodeForMap {
fn read_at(&self, offset: usize, buf: &mut [u8]) -> usize {
self.0.read_at(offset, buf).unwrap()
}
}