You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/md_discovery/md_mining.py

266 lines
13 KiB

7 months ago
import itertools
import pickle
import random
import operator
7 months ago
from operator import itemgetter
import pandas as pd
import torch
import matplotlib.pyplot as plt
from torch import LongTensor
from tqdm import tqdm
from settings import *
# note 对表进行嵌入时定位了有空值的cell, 计算相似度时有空值则置为-1.0000
def mining(train: pd.DataFrame):
# data is train set, in which each row represents a tuple pair
train = train.astype(str)
# 将label列移到最后
train = pd.concat([train, pd.DataFrame({'label': train.pop('label')})], axis=1)
# 尝试不将左右表key手动调整相同而是只看gold属性是否为1
# 故将左右表key直接去除
data = train.drop(columns=['_id', 'ltable_id', 'rtable_id'], inplace=False)
# data中现存属性除key以外左右表属性和gold, 不含_id
columns = data.columns.values.tolist()
columns_without_prefix = [_.replace('ltable_', '') for _ in columns if _.startswith('ltable_')]
# 列表, 每个元素为二元组, 包含对应列的索引
col_tuple_list = build_col_tuple_list(columns)
length = data.shape[0]
width = data.shape[1]
# 嵌入data每一个cell, 纵向遍历
# note 此处已重设索引
data = data.reset_index(drop=True)
sentences = data.values.flatten(order='F').tolist()
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True)
split_embedding = torch.split(embedding, length, dim=0)
table_tensor = torch.stack(split_embedding, dim=0, out=None)
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
# sim_tensor_dict = {}
sim_tensor_list = []
for col_tuple in col_tuple_list:
mask = ((data[columns[col_tuple[0]]].isin([''])) | (data[columns[col_tuple[1]]].isin([''])))
7 months ago
empty_string_indices = data[mask].index.tolist() # 空字符串索引
lattr_tensor = norm_table_tensor[col_tuple[0]]
rattr_tensor = norm_table_tensor[col_tuple[1]]
mul_tensor = lattr_tensor * rattr_tensor
7 months ago
sim_tensor = torch.sum(mul_tensor, 1) # 求和得到对应属性2列张量相似度, 2列变1列
# 将有空字符串的位置强制置为-1.0000
sim_tensor = sim_tensor.scatter(0, torch.tensor(empty_string_indices, device='cuda').long(), -1.0000)
sim_tensor = torch.round(sim_tensor, decimals=2)
sim_tensor_list.append(sim_tensor.unsqueeze(1))
# sim_tensor_dict[columns[col_tuple[0]].replace('ltable_', '')] = sim_tensor
sim_table_tensor = torch.cat(sim_tensor_list, dim=1)
# 创建一个1列的tensor长度与相似度张量相同先初始化为全0
label_tensor = torch.zeros((sim_table_tensor.size(0), 1), device='cuda')
# 生成带标签的相似度张量
sim_table_tensor_labeled = torch.cat((sim_table_tensor, label_tensor), 1)
# 找到匹配元组对的行索引
mask = (data['label'].isin(['1']))
match_pair_indices = data[mask].index.tolist()
# 根据索引将匹配的行标签置为1
sim_table_tensor_labeled[match_pair_indices, -1] = 1.00
sorted_unique_value_tensor_list = []
for _ in range(len(col_tuple_list)):
# 将sim_table_tensor每一列的值从小到大排列加入列表
sorted_unique_value_tensor = torch.sort(sim_table_tensor[:, _].unique()).values
# 将每一列可能的相似度取值中小于0的都删掉
sorted_unique_value_tensor = sorted_unique_value_tensor[sorted_unique_value_tensor >= 0]
sorted_unique_value_tensor_list.append(sorted_unique_value_tensor)
# 随机生成候选MD, 形成一个二维张量, 每一行代表一个候选MD
candidate_mds_tensor = build_candidate_md_matrix(sorted_unique_value_tensor_list)
result_list = []
# 遍历每一个MD
for _ in tqdm(range(candidate_mds_tensor.shape[0])):
# 对每一个MD加一个0.5的标记, 意为match
md_tensor_labeled = torch.cat((candidate_mds_tensor[_], torch.tensor([0.5], device='cuda')), 0)
abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled)
if abs_support >= support_threshold and confidence >= confidence_threshold:
md_list_format = [round(i, 2) for i in candidate_mds_tensor[_].tolist()]
md_dict_format = {}
for k in range(0, len(columns_without_prefix)):
md_dict_format[columns_without_prefix[k]] = md_list_format[k]
result_list.append((md_dict_format, abs_support, confidence))
7 months ago
# result_list.sort(key=itemgetter(2), reverse=True)
# 按confidence->support的优先级排序
result_list.sort(key=itemgetter(2, 1), reverse=True)
7 months ago
result_list = merge_mds(result_list)
result_list.sort(key=itemgetter(2, 1), reverse=True)
# 保存到本地
mds_to_txt(result_list)
return result_list
# 遍历MD列表, 将满足的直接加入结果列表, 不满足的看能否收紧, 不能收紧直接跳过
# 若能收紧则将收紧后的一个个加入暂存列表, 并在该轮遍历结束后替换MD列表, 直到MD列表为空
# while len(md_list) > 0:
# tmp_list = []
# for md_tensor in tqdm(md_list):
# md_tensor_labeled = torch.cat((md_tensor, torch.tensor([0.5], device='cuda')), 0)
# abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled)
# # 如果support小于1, 没必要收紧阈值, 跳过
# if abs_support >= 1:
# # 如果support满足但confidence不满足, 需要收紧阈值
# if confidence < confidence_threshold:
# for _ in range(len(md_tensor)):
# new_md_tensor = md_tensor.clone()
# if new_md_tensor[_] == -1.00:
# new_md_tensor[_] = sorted_unique_value_tensor_list[_][0]
# if len(tmp_list) == 0:
# tmp_list.append(new_md_tensor)
# else:
# stacked_tmp_tensors = torch.stack(tmp_list)
# is_contained = (stacked_tmp_tensors == new_md_tensor) .all(dim=1).any()
# if not is_contained:
# tmp_list.append(new_md_tensor)
# else:
# a_tensor = sorted_unique_value_tensor_list[_]
# b_value = new_md_tensor[_]
# next_index = torch.where(a_tensor == b_value)[0].item() + 1
# if next_index < len(a_tensor):
# new_md_tensor[_] = a_tensor[next_index]
# tmp_list.append(new_md_tensor)
# # torch.where(sorted_unique_value_tensor_list[2] == 0.16)[0].item()
# # 如果都满足, 直接加进结果列表
# else:
# result_list.append(md_tensor)
# md_list = tmp_list
def build_col_tuple_list(columns_):
col_tuple_list_ = []
for _ in columns_:
if _.startswith('ltable'):
left_index = columns_.index(_)
right_index = columns_.index(_.replace('ltable_', 'rtable_'))
col_tuple_list_.append((left_index, right_index))
return col_tuple_list_
# def init_md_list(md_dimension: int):
# md_list_ = []
# # 创建全为-1的初始MD, 保留两位小数
# init_md_tensor = torch.full((md_dimension, ), -1.0, device='cuda')
# init_md_tensor = torch.round(init_md_tensor, decimals=2)
# md_list_.append(init_md_tensor)
# return md_list_
def get_metrics(md_tensor_labeled_, sim_table_tensor_labeled_):
table_tensor_length = sim_table_tensor_labeled_.size()[0]
# MD原本为列向量, 转置为行向量
md_tensor_labeled_2d = md_tensor_labeled_.unsqueeze(1).transpose(0, 1)
# 沿行扩展1倍(不扩展), 沿列扩展至与相似度表同样长
md_tensor_labeled_2d = md_tensor_labeled_2d.repeat(table_tensor_length, 1)
# 去掉标签列, 判断每一行相似度是否大于等于MD要求, 该张量行数与sim_table_tensor_labeled_相同, 少一列标签列
support_tensor = torch.ge(sim_table_tensor_labeled_[:, :-1], md_tensor_labeled_2d[:, :-1])
# 沿行方向判断support_tensor每一行是否都为True, 行数不变, 压缩为1列
support_tensor = torch.all(support_tensor, dim=1, keepdim=True)
# 统计这个tensor中True的个数, 即为absolute support
abs_support_ = torch.sum(support_tensor).item()
# 保留标签列, 判断每一行相似度是否大于等于MD要求
support_tensor = torch.ge(sim_table_tensor_labeled_, md_tensor_labeled_2d)
# 统计既满足相似度要求也匹配的, abs_strict_support表示左右都满足的个数
support_tensor = torch.all(support_tensor, dim=1, keepdim=True)
abs_strict_support_ = torch.sum(support_tensor).item()
# 计算confidence
confidence_ = abs_strict_support_ / abs_support_ if abs_support_ > 0 else 0
return abs_support_, confidence_
# 随机生成MD, 拼成一个矩阵, 每一行代表一条MD
def build_candidate_md_matrix(sorted_unique_value_tensor_list_: list):
# 假设先随机抽取20000条
length_ = len(sorted_unique_value_tensor_list_)
N = 20000
# 对于第一列所有相似度取值, 随机有放回地抽取N个, 生成行索引
indices = torch.randint(0, len(sorted_unique_value_tensor_list_[0]), (N, 1))
# 为每一列生成一个索引张量, 表示从相应列张量中随机选择的值的索引
for _ in range(1, length_):
indices = torch.cat((indices, torch.randint(0, len(sorted_unique_value_tensor_list_[_]), (N, 1))), dim=1)
# 使用生成的索引从每个列相似度张量中选取值, 构成新的张量
candidate_md_matrix_list = []
for _ in range(length_):
candidate_md_matrix_list.append(sorted_unique_value_tensor_list_[_][indices[:, _].long()].unsqueeze(1))
candidate_md_matrix_ = torch.cat(candidate_md_matrix_list, dim=1)
# 此tensor将与其他置为-1的tensor拼接
joint_candidate_md_matrix_ = candidate_md_matrix_.clone()
# 随机将1列, 2列......, M-1列置为-1
for i in range(length_ - 1):
index_list_format = []
for j in range(candidate_md_matrix_.shape[0]):
# 对每条MD随机选择将要置为-1的列索引
index_list_format.append(random.sample([_ for _ in range(0, length_)], i + 1))
index = torch.tensor(index_list_format, device='cuda')
# 随机调整为-1后的MD集合
modified_candidate = candidate_md_matrix_.scatter(1, index, -1)
joint_candidate_md_matrix_ = torch.cat((joint_candidate_md_matrix_, modified_candidate), 0)
joint_candidate_md_matrix_ = joint_candidate_md_matrix_.unique(dim=0)
return joint_candidate_md_matrix_
def mds_to_txt(result_list_):
p = md_output_dir + r"\mds.txt"
with open(p, 'w') as f:
for _ in result_list_:
f.write(f'MD: {str(_[0])}\tAbsolute Support: {str(_[1])}\tConfidence: {str(_[2])}')
f.write('\n')
7 months ago
# 合并一些MD
def merge_mds(md_list_):
# 创建一个空字典用于分组
grouped_md_tuples = {}
# 遍历三元组并对它们进行分组
for md_tuple in md_list_:
# 提取Support和Confidence的值作为字典的键
key = (md_tuple[1], md_tuple[2])
# 检查键是否已经存在于分组字典中
if key in grouped_md_tuples:
# 如果存在,将三元组添加到对应的列表中
grouped_md_tuples[key].append(md_tuple)
else:
# 如果不存在,创建一个新的键值对
grouped_md_tuples[key] = [md_tuple]
# 不要键只要值
# 一个二级列表, 每个子列表中MD tuple的support和confidence一样
grouped_md_tuples = list(grouped_md_tuples.values())
for same_sc_list in grouped_md_tuples:
# 创建一个索引列表,用于标记需要删除的元组
indices_to_remove = []
# 获取元组列表的长度
length = len(same_sc_list)
# 遍历元组列表,进行比较和删除操作
for i in range(length):
for j in range(length):
# 比较两个元组的字典值
if i != j and all(same_sc_list[i][0][key_] >= same_sc_list[j][0][key_] for key_ in same_sc_list[i][0]):
# 如果同组内一个MD的所有相似度阈值都大于等于另一个MD, 则前者可以删除
indices_to_remove.append(i)
break # 由于列表大小会变化,跳出内层循环
# 根据索引列表逆序删除元组,以避免在删除时改变列表大小
for index in sorted(indices_to_remove, reverse=True):
del same_sc_list[index]
# 二级列表转一级列表
return list(itertools.chain.from_iterable(grouped_md_tuples))
if __name__ == '__main__':
_train = pd.read_csv(directory_path + r'\train_whole.csv')
result = mining(_train)
with open(md_output_dir + r"\mds.pickle", "wb") as file_:
pickle.dump(result, file_)