You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/hpo/er_model_hpo.py

275 lines
13 KiB

1 year ago
import os
1 year ago
import numpy as np
import torch
import json
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float
1 year ago
from ConfigSpace.conditions import InCondition
from ConfigSpace.read_and_write import json as csj
1 year ago
import py_entitymatching as em
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
from smac import HyperparameterOptimizationFacade, Scenario
1 year ago
from md_discovery.md_discover import md_discover
from settings import *
from ml_er.ml_entity_resolver import evaluate_prediction, load_mds, is_explicable, build_col_pairs_sim_tensor_dict, \
process_prediction_for_md_discovery, er_process
1 year ago
class Classifier:
1 year ago
@property
def configspace(self) -> ConfigurationSpace:
# Build Configuration Space which defines all parameters and their ranges
cs = ConfigurationSpace(seed=0)
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
selected_attrs = ltable.columns.values.tolist()
1 year ago
block_attr_items = selected_attrs[:]
block_attr_items.remove(ltable_id)
1 year ago
block_attr = Categorical("block_attr", block_attr_items)
1 year ago
overlap_size = Integer("overlap_size", (1, 3), default=1)
1 year ago
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf", "lg", "ln", "nb"], default="rf")
ml_blocker = Categorical("ml_blocker", ["over_lap", "attr_equiv"], default="over_lap")
similarity_thresh = Float("similarity_thresh", (0.2, 0.21))
support_thresh = Integer("support_thresh", (1, 1000))
confidence_thresh = Float("confidence_thresh", (0.25, 0.5))
1 year ago
1 year ago
use_overlap_size = InCondition(child=overlap_size, parent=ml_blocker, values=["over_lap"])
cs.add_hyperparameters([block_attr, overlap_size, ml_matcher, ml_blocker,
similarity_thresh, support_thresh, confidence_thresh])
1 year ago
cs.add_conditions([use_overlap_size])
1 year ago
return cs
# train 就是整个函数 只需将返回结果由预测变成预测结果的评估
1 year ago
def train(self, config: Configuration, seed: int = 0) -> float:
1 year ago
cm.del_catalog()
indicators = er_process(config)
return 1-indicators['performance']
# # 数据在外部加载
# ########################################################################################################################
# ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
# cm.set_key(ltable, ltable_id)
# # ltable.fillna("", inplace=True)
# rtable = pd.read_csv(rtable_path, encoding='ISO-8859-1')
# cm.set_key(rtable, rtable_id)
# # rtable.fillna("", inplace=True)
# mappings = pd.read_csv(mapping_path, encoding='ISO-8859-1')
#
# lid_mapping_list = []
# rid_mapping_list = []
# # 全部转为字符串
# # ltable = ltable.astype(str)
# # rtable = rtable.astype(str)
# # mappings = mappings.astype(str)
# matching_number = len(mappings) # 所有阳性样本数商品数据集应为1300
#
# for index, row in mappings.iterrows():
# lid_mapping_list.append(row[mapping_lid])
# rid_mapping_list.append(row[mapping_rid])
# # 仅保留两表中出现在映射表中的行,增大正样本比例
# selected_ltable = ltable[ltable[ltable_id].isin(lid_mapping_list)]
# # if len(lr_attrs_map) > 0:
# # selected_ltable = selected_ltable.rename(columns=lr_attrs_map) # 参照右表,修改左表中与右表对应但不同名的字段
# tables_id = rtable_id # 不论左表右表ID字段名是否一致经上一行调整统一以右表为准
# selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)]
# selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名
# ########################################################################################################################
#
# attrs_with_l_prefix = ['ltable_' + i for i in selected_attrs] # 字段名加左前缀
# attrs_with_r_prefix = ['rtable_' + i for i in selected_attrs] # 字段名加右前缀
# cm.set_key(selected_ltable, tables_id)
# cm.set_key(selected_rtable, tables_id)
#
# if config["ml_blocker"] == "over_lap":
# blocker = em.OverlapBlocker()
# candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"],
# l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
# overlap_size=config["overlap_size"], show_progress=False,
# allow_missing=True)
# elif config["ml_blocker"] == "attr_equiv":
# blocker = em.AttrEquivalenceBlocker()
# candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"],
# l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
# allow_missing=True)
#
# candidate['gold'] = 0
# candidate = candidate.reset_index(drop=True)
# candidate_match_rows = []
# for line in candidate.itertuples():
# l_id = getattr(line, 'ltable_' + tables_id)
# map_row = mappings[mappings[mapping_lid] == l_id]
#
# if map_row is not None:
# r_id = map_row[mapping_rid]
# for value in r_id:
# if value == getattr(line, 'rtable_' + tables_id):
# candidate_match_rows.append(line[0])
# else:
# continue
# for _ in candidate_match_rows:
# candidate.loc[_, 'gold'] = 1
#
# candidate.fillna("", inplace=True)
#
# # 裁剪负样本,保持正负样本数量一致
# candidate_mismatch = candidate[candidate['gold'] == 0]
# candidate_match = candidate[candidate['gold'] == 1]
# if len(candidate_mismatch) > len(candidate_match):
# candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
# # 拼接正负样本
# candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
# if len(candidate_for_train_test) == 0:
1 year ago
# return 1
# candidate_for_train_test = candidate_for_train_test.reset_index(drop=True)
# cm.set_key(candidate_for_train_test, '_id')
# cm.set_fk_ltable(candidate_for_train_test, 'ltable_' + tables_id)
# cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + tables_id)
# cm.set_ltable(candidate_for_train_test, selected_ltable)
# cm.set_rtable(candidate_for_train_test, selected_rtable)
#
# # 分为训练测试集
# train_proportion = 0.7
# test_proportion = 0.3
# sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0)
# train_set = sets['train']
# test_set = sets['test']
#
# cm.set_key(train_set, '_id')
# cm.set_fk_ltable(train_set, 'ltable_' + tables_id)
# cm.set_fk_rtable(train_set, 'rtable_' + tables_id)
# cm.set_ltable(train_set, selected_ltable)
# cm.set_rtable(train_set, selected_rtable)
#
# cm.set_key(test_set, '_id')
# cm.set_fk_ltable(test_set, 'ltable_' + tables_id)
# cm.set_fk_rtable(test_set, 'rtable_' + tables_id)
# cm.set_ltable(test_set, selected_ltable)
# cm.set_rtable(test_set, selected_rtable)
#
# if config["ml_matcher"] == "dt":
# matcher = em.DTMatcher(name='DecisionTree', random_state=0)
# elif config["ml_matcher"] == "svm":
# matcher = em.SVMMatcher(name='SVM', random_state=0)
# elif config["ml_matcher"] == "rf":
# matcher = em.RFMatcher(name='RF', random_state=0)
# elif config["ml_matcher"] == "lg":
# matcher = em.LogRegMatcher(name='LogReg', random_state=0)
# elif config["ml_matcher"] == "ln":
# matcher = em.LinRegMatcher(name='LinReg')
# elif config["ml_matcher"] == "nb":
# matcher = em.NBMatcher(name='NaiveBayes')
# feature_table = em.get_features_for_matching(selected_ltable, selected_rtable, validate_inferred_attr_types=False)
#
# train_feature_vecs = em.extract_feature_vecs(train_set,
# feature_table=feature_table,
# attrs_after=['gold'],
# show_progress=False)
# train_feature_vecs.fillna(value=0, inplace=True)
# test_feature_after = attrs_with_l_prefix[:]
# test_feature_after.extend(attrs_with_r_prefix)
# for _ in test_feature_after:
# if _.endswith(tables_id):
# test_feature_after.remove(_)
# test_feature_after.append('gold')
# test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
# attrs_after=test_feature_after, show_progress=False)
# test_feature_vecs.fillna(value=0, inplace=True)
# fit_exclude = ['_id', 'ltable_' + tables_id, 'rtable_' + tables_id, 'gold']
# matcher.fit(table=train_feature_vecs, exclude_attrs=fit_exclude, target_attr='gold')
#
# test_feature_after.extend(['_id', 'ltable_' + tables_id, 'rtable_' + tables_id])
# predictions = matcher.predict(table=test_feature_vecs, exclude_attrs=test_feature_after,
# append=True, target_attr='predicted', inplace=False)
# eval_result = em.eval_matches(predictions, 'gold', 'predicted')
# em.print_eval_summary(eval_result)
# indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, candidate_for_train_test)
# print(indicators)
#
# # 计算可解释性
# predictions_attrs = []
# predictions_attrs.extend(attrs_with_l_prefix)
# predictions_attrs.extend(attrs_with_r_prefix)
# predictions_attrs.extend(['gold', 'predicted'])
# predictions = predictions[predictions_attrs]
# process_prediction_for_md_discovery(predictions)
# predictions = predictions.reset_index(drop=True)
# predictions = predictions.astype(str)
# sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
#
# # 默认路径为 "../md_discovery/output/xxx.txt"
# # mds/vio 共2个md文件
# md_discover(config)
# md_paths = [md_output_dir + 'mds.txt', md_output_dir + 'vio.txt']
# md_list = load_mds(md_paths) # 从全局变量中读取所有的md
# epl_match = 0 # 可解释预测match
# if len(md_list) > 0:
# for line in predictions.itertuples():
# if is_explicable(line, md_list, sim_tensor_dict) and str(getattr(line, 'predicted')) == str(1):
# epl_match += 1
#
# ppre = predictions[predictions['predicted'] == str(1)]
# interpretability = epl_match / len(ppre) # 可解释性
#
# if (indicators["block_recall"] < 0.8) and (indicators["block_recall"] < indicators["recall"]):
# f1 = (2.0 * indicators["precision"] * indicators["block_recall"]) / (
# indicators["precision"] + indicators["block_recall"])
# else:
# f1 = indicators["F1"]
# # if indicators["block_recall"] < 0.8:
# # return 1
# # f1 = indicators["F1"]
# performance = interpre_weight * interpretability + (1 - interpre_weight) * f1
# print('Interpretability: ', interpretability)
# return 1 - performance
1 year ago
1 year ago
def ml_er_hpo():
1 year ago
classifier = Classifier()
cs = classifier.configspace
str_configspace = csj.write(cs)
dict_configspace = json.loads(str_configspace)
with open(hpo_output_dir + "configspace.json", "w") as f:
json.dump(dict_configspace, f, indent=4)
1 year ago
# Next, we create an object, holding general information about the run
scenario = Scenario(
cs,
1 year ago
deterministic=True,
n_trials=50, # We want to run max 50 trials (combination of config and seed)
n_workers=1
1 year ago
)
1 year ago
initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=5)
1 year ago
# Now we use SMAC to find the best hyperparameters
smac = HyperparameterOptimizationFacade(
scenario,
classifier.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
1 year ago
incumbent_cost = smac.validate(incumbent)
default = cs.get_default_configuration()
default_cost = smac.validate(default)
print(f"Default Cost: {default_cost}")
print(f"Incumbent Cost: {incumbent_cost}")
1 year ago
1 year ago
if incumbent_cost > default_cost:
incumbent = default
print(f"Updated Incumbent Cost: {default_cost}")
1 year ago
1 year ago
print(f"Optimized Configuration:{incumbent.values()}")
with open(hpo_output_dir + "incumbent.json", "w") as f:
json.dump(dict(incumbent), f, indent=4)
1 year ago
return incumbent
1 year ago
if __name__ == '__main__':
ml_er_hpo()