|
|
|
|
import json
|
|
|
|
|
import os
|
|
|
|
|
import pickle
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
import ConfigSpace
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import py_entitymatching as em
|
|
|
|
|
import torch
|
|
|
|
|
from ConfigSpace import Configuration
|
|
|
|
|
from ConfigSpace.read_and_write import json as csj
|
|
|
|
|
import py_entitymatching.catalog.catalog_manager as cm
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
from md_discovery.md_mining import mining
|
|
|
|
|
from settings import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def blocking_mining():
|
|
|
|
|
start = time.time()
|
|
|
|
|
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
|
|
|
|
|
cm.set_key(ltable, ltable_id)
|
|
|
|
|
rtable = pd.read_csv(rtable_path, encoding='ISO-8859-1')
|
|
|
|
|
cm.set_key(rtable, rtable_id)
|
|
|
|
|
mappings = pd.read_csv(mapping_path, encoding='ISO-8859-1')
|
|
|
|
|
matching_number = len(mappings)
|
|
|
|
|
# if ltable_id == rtable_id:
|
|
|
|
|
# tables_id = rtable_id
|
|
|
|
|
attributes = ltable.columns.values.tolist()
|
|
|
|
|
# lattributes = ['ltable_' + i for i in attributes]
|
|
|
|
|
# rattributes = ['rtable_' + i for i in attributes]
|
|
|
|
|
cm.set_key(ltable, ltable_id)
|
|
|
|
|
cm.set_key(rtable, rtable_id)
|
|
|
|
|
|
|
|
|
|
blocker = em.OverlapBlocker()
|
|
|
|
|
candidate = blocker.block_tables(ltable, rtable, ltable_block_attr, rtable_block_attr, allow_missing=True,
|
|
|
|
|
l_output_attrs=attributes, r_output_attrs=attributes, n_jobs=1,
|
|
|
|
|
overlap_size=1, show_progress=False)
|
|
|
|
|
candidate['gold'] = 0
|
|
|
|
|
candidate = candidate.reset_index(drop=True)
|
|
|
|
|
block_time = time.time()
|
|
|
|
|
print(f'Block Time: {block_time - start}')
|
|
|
|
|
|
|
|
|
|
# 根据mapping表标注数据
|
|
|
|
|
candidate_match_rows = []
|
|
|
|
|
for t in tqdm(mappings.itertuples()):
|
|
|
|
|
mask = ((candidate['ltable_' + ltable_id].isin([getattr(t, mapping_lid)])) &
|
|
|
|
|
(candidate['rtable_' + rtable_id].isin([getattr(t, mapping_rid)])))
|
|
|
|
|
matching_indices = candidate[mask].index
|
|
|
|
|
candidate_match_rows.extend(matching_indices.tolist())
|
|
|
|
|
match_rows_mask = candidate.index.isin(candidate_match_rows)
|
|
|
|
|
candidate.loc[match_rows_mask, 'gold'] = 1
|
|
|
|
|
candidate.fillna(value="", inplace=True)
|
|
|
|
|
|
|
|
|
|
# negative样本太多, 采样三倍于positive样本量
|
|
|
|
|
candidate_mismatch = candidate[candidate['gold'] == 0]
|
|
|
|
|
candidate_match = candidate[candidate['gold'] == 1]
|
|
|
|
|
candidate_mismatch = candidate_mismatch.sample(n=3*len(candidate_match))
|
|
|
|
|
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
|
|
|
|
|
# 如果拼接后不重设索引可能导致索引重复
|
|
|
|
|
candidate_for_train_test = candidate_for_train_test.reset_index(drop=True)
|
|
|
|
|
cm.set_key(candidate_for_train_test, '_id')
|
|
|
|
|
cm.set_fk_ltable(candidate_for_train_test, 'ltable_' + ltable_id)
|
|
|
|
|
cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + rtable_id)
|
|
|
|
|
cm.set_ltable(candidate_for_train_test, ltable)
|
|
|
|
|
cm.set_rtable(candidate_for_train_test, rtable)
|
|
|
|
|
block_recall = len(candidate_match) / matching_number
|
|
|
|
|
|
|
|
|
|
# 分为训练测试集
|
|
|
|
|
train_proportion = 0.5
|
|
|
|
|
sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0)
|
|
|
|
|
train_set = sets['train']
|
|
|
|
|
test_set = sets['test']
|
|
|
|
|
label_and_split_time = time.time()
|
|
|
|
|
print(f'Label and Split Time: {label_and_split_time - block_time}')
|
|
|
|
|
|
|
|
|
|
# 挖掘MD并保存本地
|
|
|
|
|
md_list = mining(train_set)
|
|
|
|
|
mining_time = time.time()
|
|
|
|
|
print(f'Mining Time: {mining_time - label_and_split_time}')
|
|
|
|
|
blocking_results = (ltable, rtable, train_set, test_set, md_list, block_recall)
|
|
|
|
|
# 将blocking结果保存到本地
|
|
|
|
|
with open(er_output_dir + "blocking_result.pickle", "wb") as file_:
|
|
|
|
|
pickle.dump(blocking_results, file_)
|
|
|
|
|
return blocking_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def matching(config: Configuration, blocking_result_):
|
|
|
|
|
print(f'\033[33mConfig: {config}\033[0m')
|
|
|
|
|
start = time.time()
|
|
|
|
|
ltable = blocking_result_[0]
|
|
|
|
|
rtable = blocking_result_[1]
|
|
|
|
|
train_set = blocking_result_[2]
|
|
|
|
|
test_set = blocking_result_[3]
|
|
|
|
|
md_list = blocking_result_[4]
|
|
|
|
|
block_recall = blocking_result_[5]
|
|
|
|
|
ml_matcher = config["ml_matcher"]
|
|
|
|
|
match ml_matcher:
|
|
|
|
|
case "dt":
|
|
|
|
|
matcher = em.DTMatcher(name='DecisionTree', random_state=0, criterion=config['tree_criterion'],
|
|
|
|
|
max_depth=config['tree_max_depth'], splitter=config['dt_splitter'],
|
|
|
|
|
max_features=config['dt_max_features'])
|
|
|
|
|
case "svm":
|
|
|
|
|
matcher = em.SVMMatcher(name='SVM', random_state=0, kernel=config['svm_kernel'], degree=config['svm_degree'],
|
|
|
|
|
gamma=config['svm_gamma'], C=config['svm_C'], coef0=config['svm_constant'])
|
|
|
|
|
case "rf":
|
|
|
|
|
matcher = em.RFMatcher(name='RandomForest', random_state=0, criterion=config['tree_criterion'],
|
|
|
|
|
max_depth=config['tree_max_depth'], n_estimators=config['number_of_tree'],
|
|
|
|
|
max_features=config['rf_max_features'])
|
|
|
|
|
|
|
|
|
|
cm.set_key(train_set, '_id')
|
|
|
|
|
cm.set_fk_ltable(train_set, 'ltable_' + ltable_id)
|
|
|
|
|
cm.set_fk_rtable(train_set, 'rtable_' + rtable_id)
|
|
|
|
|
cm.set_ltable(train_set, ltable)
|
|
|
|
|
cm.set_rtable(train_set, rtable)
|
|
|
|
|
cm.set_key(ltable, ltable_id)
|
|
|
|
|
cm.set_key(rtable, rtable_id)
|
|
|
|
|
|
|
|
|
|
cm.set_key(test_set, '_id')
|
|
|
|
|
cm.set_fk_ltable(test_set, 'ltable_' + ltable_id)
|
|
|
|
|
cm.set_fk_rtable(test_set, 'rtable_' + rtable_id)
|
|
|
|
|
cm.set_ltable(test_set, ltable)
|
|
|
|
|
cm.set_rtable(test_set, rtable)
|
|
|
|
|
feature_table = em.get_features_for_matching(ltable, rtable, validate_inferred_attr_types=False)
|
|
|
|
|
train_feature_vecs = em.extract_feature_vecs(train_set,
|
|
|
|
|
feature_table=feature_table,
|
|
|
|
|
attrs_after=['gold'],
|
|
|
|
|
show_progress=False)
|
|
|
|
|
train_feature_vecs.fillna(value=0, inplace=True)
|
|
|
|
|
|
|
|
|
|
test_feature_after = ['ltable_' + i for i in ltable.columns.values.tolist()]
|
|
|
|
|
for _ in test_feature_after[:]:
|
|
|
|
|
test_feature_after.append(_.replace('ltable_', 'rtable_'))
|
|
|
|
|
for _ in test_feature_after:
|
|
|
|
|
if _.endswith(ltable_id) or _.endswith(rtable_id):
|
|
|
|
|
test_feature_after.remove(_)
|
|
|
|
|
test_feature_after.append('gold')
|
|
|
|
|
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
|
|
|
|
|
attrs_after=test_feature_after, show_progress=False)
|
|
|
|
|
test_feature_vecs.fillna(value=0, inplace=True)
|
|
|
|
|
|
|
|
|
|
fit_exclude = ['_id', 'ltable_' + ltable_id, 'rtable_' + rtable_id, 'gold']
|
|
|
|
|
matcher.fit(table=train_feature_vecs, exclude_attrs=fit_exclude, target_attr='gold')
|
|
|
|
|
test_feature_after.extend(['_id', 'ltable_' + ltable_id, 'rtable_' + rtable_id])
|
|
|
|
|
predictions = matcher.predict(table=test_feature_vecs, exclude_attrs=test_feature_after,
|
|
|
|
|
append=True, target_attr='predicted', inplace=False)
|
|
|
|
|
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
|
|
|
|
|
em.print_eval_summary(eval_result)
|
|
|
|
|
indicators = evaluate_prediction(predictions, 'gold', 'predicted')
|
|
|
|
|
indicators['block_recall'] = block_recall
|
|
|
|
|
|
|
|
|
|
test_feature_after.remove('_id')
|
|
|
|
|
test_feature_after.append('predicted')
|
|
|
|
|
predictions = predictions[test_feature_after]
|
|
|
|
|
|
|
|
|
|
predictions = predictions.reset_index(drop=True)
|
|
|
|
|
predictions = predictions.astype(str)
|
|
|
|
|
sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
|
|
|
|
|
predictions['confidence'] = 0
|
|
|
|
|
|
|
|
|
|
epl_match = 0 # 可解释,预测match
|
|
|
|
|
if len(md_list) > 0:
|
|
|
|
|
for row in tqdm(predictions.itertuples()):
|
|
|
|
|
x = is_explicable(row, md_list, sim_tensor_dict)
|
|
|
|
|
if x > 0 and str(getattr(row, 'predicted')) == str(1):
|
|
|
|
|
predictions.loc[row[0], 'confidence'] = x
|
|
|
|
|
epl_match += 1
|
|
|
|
|
|
|
|
|
|
df = predictions[predictions['predicted'] == str(1)]
|
|
|
|
|
interpretability = epl_match / len(df) # 可解释性
|
|
|
|
|
indicators['interpretability'] = interpretability
|
|
|
|
|
|
|
|
|
|
# note 既然不调block参数, 不妨假设block_recall很高, 不必考虑
|
|
|
|
|
# if indicators["block_recall"] < indicators["recall"]:
|
|
|
|
|
# f1 = (2.0 * indicators["precision"] * indicators["block_recall"]) / (
|
|
|
|
|
# indicators["precision"] + indicators["block_recall"])
|
|
|
|
|
# else:
|
|
|
|
|
# f1 = indicators["F1"]
|
|
|
|
|
|
|
|
|
|
performance = interpre_weight * interpretability + (1 - interpre_weight) * indicators["F1"]
|
|
|
|
|
indicators['performance'] = performance
|
|
|
|
|
print(f'ER Indicators: {indicators}')
|
|
|
|
|
predictions.to_csv(er_output_dir + 'predictions.csv', sep=',', index=False, header=True)
|
|
|
|
|
print(f'\033[33mTime consumed by matching in seconds: {time.time() - start}\033[0m')
|
|
|
|
|
return indicators
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def evaluate_prediction(prediction_: pd.DataFrame, labeled_attr: str, predicted_attr: str) -> dict:
|
|
|
|
|
new_df = prediction_.reset_index(drop=False, inplace=False)
|
|
|
|
|
gold = new_df[labeled_attr]
|
|
|
|
|
predicted = new_df[predicted_attr]
|
|
|
|
|
gold_negative = gold[gold == 0].index.values
|
|
|
|
|
gold_positive = gold[gold == 1].index.values
|
|
|
|
|
predicted_negative = predicted[predicted == 0].index.values
|
|
|
|
|
predicted_positive = predicted[predicted == 1].index.values
|
|
|
|
|
|
|
|
|
|
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
|
|
|
|
|
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
|
|
|
|
|
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
|
|
|
|
|
|
|
|
|
|
num_true_positives = float(len(true_positive_indices))
|
|
|
|
|
num_false_positives = float(len(false_positive_indices))
|
|
|
|
|
num_false_negatives = float(len(false_negative_indices))
|
|
|
|
|
|
|
|
|
|
precision_denominator = num_true_positives + num_false_positives
|
|
|
|
|
recall_denominator = num_true_positives + num_false_negatives
|
|
|
|
|
|
|
|
|
|
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
|
|
|
|
|
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
|
|
|
|
|
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
|
|
|
|
|
|
|
|
|
|
return {"precision": precision, "recall": recall, "F1": F1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_col_pairs_sim_tensor_dict(predictions: pd.DataFrame):
|
|
|
|
|
predictions_attrs = predictions.columns.values.tolist()
|
|
|
|
|
col_tuple_list = []
|
|
|
|
|
for _ in predictions_attrs:
|
|
|
|
|
if _.startswith('ltable'):
|
|
|
|
|
left_index = predictions_attrs.index(_)
|
|
|
|
|
right_index = predictions_attrs.index(_.replace('ltable_', 'rtable_'))
|
|
|
|
|
col_tuple_list.append((left_index, right_index))
|
|
|
|
|
|
|
|
|
|
length = predictions.shape[0]
|
|
|
|
|
width = predictions.shape[1]
|
|
|
|
|
predictions = predictions.reset_index(drop=True)
|
|
|
|
|
sentences = predictions.values.flatten(order='F').tolist()
|
|
|
|
|
|
|
|
|
|
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True)
|
|
|
|
|
split_embedding = torch.split(embedding, length, dim=0)
|
|
|
|
|
table_tensor = torch.stack(split_embedding, dim=0, out=None)
|
|
|
|
|
# prediction的归一化嵌入张量
|
|
|
|
|
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
|
|
|
|
|
sim_tensor_dict = {}
|
|
|
|
|
for col_tuple in col_tuple_list:
|
|
|
|
|
lattr_tensor = norm_table_tensor[col_tuple[0]]
|
|
|
|
|
rattr_tensor = norm_table_tensor[col_tuple[1]]
|
|
|
|
|
mul_tensor = lattr_tensor * rattr_tensor
|
|
|
|
|
sim_tensor = torch.sum(mul_tensor, 1)
|
|
|
|
|
sim_tensor = torch.round(sim_tensor, decimals=4)
|
|
|
|
|
sim_tensor_dict[predictions_attrs[col_tuple[0]].replace('ltable_', '')] = sim_tensor
|
|
|
|
|
return sim_tensor_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def is_explicable(row, all_mds: list, st_dict):
|
|
|
|
|
attrs = all_mds[0][0].keys() # 从第一条md_tuple中的md字典中读取所有字段
|
|
|
|
|
for md_tuple in all_mds:
|
|
|
|
|
explicable = True # 假设这条md能解释当前元组
|
|
|
|
|
for a in attrs:
|
|
|
|
|
if st_dict[a][row[0]].item() < md_tuple[0][a]:
|
|
|
|
|
explicable = False # 任意一个字段的相似度达不到阈值,这条md就不能解释当前元组
|
|
|
|
|
break # 不再与当前md的其他相似度阈值比较,跳转到下一条md
|
|
|
|
|
if explicable:
|
|
|
|
|
return md_tuple[2] # 任意一条md能解释,直接返回
|
|
|
|
|
return -1.0 # 遍历结束,不能解释
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ml_er(config: Configuration, blocking_result_):
|
|
|
|
|
indicators = matching(config, blocking_result_)
|
|
|
|
|
output_path = er_output_dir + "eval_result.txt"
|
|
|
|
|
with open(output_path, 'w') as _f:
|
|
|
|
|
_f.write('Precision:' + str(indicators["precision"]) + '\n')
|
|
|
|
|
_f.write('Recall:' + str(indicators["recall"]) + '\n')
|
|
|
|
|
_f.write('F1:' + str(indicators["F1"]) + '\n')
|
|
|
|
|
_f.write('block_recall:' + str(indicators["block_recall"]) + '\n')
|
|
|
|
|
_f.write('interpretability:' + str(indicators['interpretability']) + '\n')
|
|
|
|
|
_f.write('performance:' + str(indicators['performance']) + '\n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
if os.path.isfile(hpo_output_dir + "incumbent.json"):
|
|
|
|
|
with open(hpo_output_dir + "configspace.json", 'r') as f:
|
|
|
|
|
dict_configspace = json.load(f)
|
|
|
|
|
str_configspace = json.dumps(dict_configspace)
|
|
|
|
|
configspace = csj.read(str_configspace)
|
|
|
|
|
with open(hpo_output_dir + "incumbent.json", 'r') as f:
|
|
|
|
|
dic = json.load(f)
|
|
|
|
|
configuration = ConfigSpace.Configuration(configspace, values=dic)
|
|
|
|
|
with open(er_output_dir + "blocking_result.pickle", "rb") as file:
|
|
|
|
|
blocking_result = pickle.load(file)
|
|
|
|
|
ml_er(configuration, blocking_result)
|