HuangJintao
HuangJintao 1 year ago
parent 0902e31e98
commit 838dba05c4

1
.gitignore vendored

@ -0,0 +1 @@
/deprecated/

@ -1,152 +0,0 @@
import pandas as pd
import time
import Levenshtein
import copy
def my_Levenshtein_ratio(str1, str2):
return 1 - Levenshtein.distance(str1, str2) / max(len(str1), len(str2))
def if_minimal(md, md_list, target_col):
# 假设这个md是minimal
minimal = True
for _ in md_list:
if _ != md:
# 假设列表中每一个md都使当前md不minimal
exist = True
# 如果左边任何一个大于,则假设不成立
for col in list(set(_.keys()) - {target_col}):
if _[col] > md[col]:
exist = False
# 如果右边小于,假设也不成立
if _[target_col] < md[target_col]:
exist = False
# 任何一次假设成立当前md不minimal
if exist:
minimal = False
break
return minimal
def satisfy_confidence(md, df, conf_thresh, target_col):
support = 0
support_plus = 0
for row1 in df.itertuples():
i = row1[0]
df_slice = df[i + 1:]
for row2 in df_slice.itertuples():
left_satisfy = True
both_satisfy = True
for col in df.columns.values.tolist():
sim = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col))
if col == target_col:
if sim < 1:
both_satisfy = False
else:
if sim < md[col]:
left_satisfy = False
both_satisfy = False
if left_satisfy:
support += 1
if both_satisfy:
support_plus += 1
if support == 0:
return False, 0.0
confidence = support_plus / support
return confidence >= conf_thresh, confidence
def inference_from_record_pairs(path, threshold, target_col):
data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1')
data = data.astype(str)
columns = data.columns.values.tolist()
md_list = []
minimal_vio = []
init_md = {}
for col in columns:
init_md[col] = 1 if col == target_col else 0
md_list.append(init_md)
for row1 in data.itertuples():
# 获取当前行的索引,从后一行开始切片
i = row1[0]
data1 = data[i + 1:]
for row2 in data1.itertuples():
violated_mds = []
# sims是两行的相似度
sims = {}
for col in columns:
similarity = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col))
sims[col] = similarity
# 寻找violated md,从md列表中删除并加入vio列表
for md in md_list:
lhs_satis = True
rhs_satis = True
for col in list(set(columns) - {target_col}):
if sims[col] < md[col]:
lhs_satis = False
if sims[target_col] < md[target_col]:
rhs_satis = False
if lhs_satis == True and rhs_satis == False:
md_list.remove(md)
violated_mds.append(md)
minimal_vio.extend(violated_mds)
for vio_md in violated_mds:
# 特殊化右侧,我们需要右侧百分百相似,其实不需要降低右侧阈值
# if sims[target_col] >= threshold:
# new_rhs = sims[target_col]
# spec_r_md = copy.deepcopy(vio_md)
# spec_r_md[target_col] = new_rhs
# if if_minimal(spec_r_md, md_list, target_col):
# md_list.append(spec_r_md)
# 特殊化左侧
for col in list(set(columns) - {target_col}):
if sims[col] + 0.001 <= 1:
spec_l_md = copy.deepcopy(vio_md)
spec_l_md[col] = threshold if sims[col] < threshold else sims[col] + 0.001
if if_minimal(spec_l_md, md_list, target_col):
md_list.append(spec_l_md)
for vio in minimal_vio:
if not if_minimal(vio, md_list, target_col):
minimal_vio.remove(vio)
tmp = copy.deepcopy(minimal_vio)
for _ in tmp:
satis, conf = satisfy_confidence(_, data, 0.8, target_col)
if not satis:
minimal_vio.remove(_)
for _ in tmp:
if not if_minimal(_, minimal_vio, target_col):
minimal_vio.remove(_)
return md_list, minimal_vio
if __name__ == '__main__':
# 目前可以仿照这个main函数写
path = "input/T_positive_with_id_concat_single_tuple.csv"
start = time.time()
# 输入csv文件路径md左侧相似度阈值md右侧目标字段
# 输出2个md列表列表1中md无violation,列表2中md有violation但confidence满足阈值(0.8)
# 例如此处输入参数要求md左侧相似度字段至少为0.7,右侧指向'id'字段
mds, mds_vio = inference_from_record_pairs(path, 0.7, 'id_concat')
# 将列表1写入本地路径需自己修改
md_path = 'output/md.txt'
with open(md_path, 'w') as f:
for _ in mds:
f.write(str(_) + '\n')
# 将列表2写入本地路径需自己修改
vio_path = 'output/vio.txt'
with open(vio_path, 'w') as f:
for _ in mds_vio:
f.write(str(_) + '\n')
print(time.time() - start)

@ -0,0 +1,249 @@
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer
import py_entitymatching as em
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
from smac import HyperparameterOptimizationFacade, Scenario
from md_discovery.functions.multi_process_infer_by_pairs import my_Levenshtein_ratio
# todo 距离度量用户可调
# 全局变量每次迭代后清空列表加入新的md路径
# todo:
# 默认路径为 "../md_discovery/output/xxx.txt"
# 真阳/假阴 mds/vio 共4个md文件
md_paths = []
def evaluate_prediction(df: pd.DataFrame, labeled_attr: str, predicted_attr: str, matching_number: int,
test_proportion: float) -> dict:
new_df = df.reset_index(drop=False, inplace=False)
gold = new_df[labeled_attr]
predicted = new_df[predicted_attr]
gold_negative = gold[gold == 0].index.values
gold_positive = gold[gold == 1].index.values
predicted_negative = predicted[predicted == 0].index.values
predicted_positive = predicted[predicted == 1].index.values
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
num_true_positives = float(len(true_positive_indices))
num_false_positives = float(len(false_positive_indices))
num_false_negatives = float(len(false_negative_indices))
precision_denominator = num_true_positives + num_false_positives
recall_denominator = num_true_positives + num_false_negatives
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
my_recall = num_true_positives / (matching_number * test_proportion)
return {"precision": precision, "recall": recall, "F1": F1, "my_recall": my_recall}
def load_mds(paths: list) -> list:
if len(paths) == 0:
return []
all_mds = []
# 传入md路径列表
for md_path in paths:
mds = []
# 打开每一个md文件
with open(md_path, 'r') as f:
# 读取每一行的md加入该文件的md列表
for line in f.readlines():
md_metadata = line.strip().split('\t')
md = eval(md_metadata[0].replace('md:', ''))
mds.append(md)
all_mds.extend(mds)
return all_mds
def is_explicable(row, all_mds: list) -> bool:
attrs = all_mds[0].keys() # 从第一条md中读取所有字段
for md in all_mds:
explicable = True # 假设这条md能解释当前元组
for a in attrs:
threshold = md[a]
if my_Levenshtein_ratio(str(getattr(row, 'ltable_'+a)), str(getattr(row, 'rtable_'+a))) < threshold:
explicable = False # 任意一个字段的相似度达不到阈值这条md就不能解释当前元组
break # 不再与当前md的其他相似度阈值比较跳转到下一条md
if explicable:
return True # 任意一条md能解释直接返回
return False # 遍历结束,不能解释
class SVM:
@property
def configspace(self) -> ConfigurationSpace:
# Build Configuration Space which defines all parameters and their ranges
cs = ConfigurationSpace(seed=0)
l_overlap_attr = Categorical("l_overlap_attr", ["title", "description", "manufacturer", "price"], default="title")
overlap_size = Integer("overlap_size", (1, 3), default=1)
cs.add_hyperparameters([l_overlap_attr, overlap_size])
return cs
# train 就是整个函数 只需将返回结果由预测变成预测结果的评估
def train(self, config: Configuration, seed: int = 0) -> float:
path_Amazon = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amazon.csv'
path_Google = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/GoogleProducts.csv'
path_Mappings = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amzon_GoogleProducts_perfectMapping.csv'
Amazon = pd.read_csv(path_Amazon, encoding='ISO-8859-1')
cm.set_key(Amazon, 'id')
Amazon.fillna("", inplace=True)
Google = pd.read_csv(path_Google, encoding='ISO-8859-1')
cm.set_key(Google, 'id')
Google.fillna("", inplace=True)
Mappings = pd.read_csv(path_Mappings)
# 仅保留两表中出现在映射表中的行,增大正样本比例
l_id_list = []
r_id_list = []
# 全部转为字符串
Amazon = Amazon.astype(str)
Google = Google.astype(str)
Mappings = Mappings.astype(str)
matching_number = len(Mappings) # 所有阳性样本数商品数据集应为1300
for index, row in Mappings.iterrows():
l_id_list.append(row["idAmazon"])
r_id_list.append(row["idGoogleBase"])
selected_Amazon = Amazon[Amazon['id'].isin(l_id_list)]
selected_Google = Google[Google['id'].isin(r_id_list)]
cm.set_key(selected_Amazon, 'id')
cm.set_key(selected_Google, 'id')
# todo blocker可调
# 1.blocker类型商品数据集可能只适合overlap
# 2.overlap字段对应关系
# 3.overlap_size
blocker = em.OverlapBlocker()
overlap_attr = 'name' if config["l_overlap_attr"] == 'title' else config["l_overlap_attr"]
candidate = blocker.block_tables(selected_Amazon, selected_Google, config["l_overlap_attr"], overlap_attr,
l_output_attrs=['id', 'title', 'description', 'manufacturer', 'price'],
r_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'],
overlap_size=config["overlap_size"], show_progress=False)
candidate['gold'] = 0
candidate_match_rows = []
for index, row in candidate.iterrows():
l_id = row["ltable_id"]
map_row = Mappings[Mappings['idAmazon'] == l_id]
if map_row is not None:
r_id = map_row["idGoogleBase"]
for value in r_id:
if value == row["rtable_id"]:
candidate_match_rows.append(row["_id"])
else:
continue
for row in candidate_match_rows:
candidate.loc[row, 'gold'] = 1
# 裁剪负样本,保持正负样本数量一致
candidate_mismatch = candidate[candidate['gold'] == 0]
candidate_match = candidate[candidate['gold'] == 1]
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
# 拼接正负样本
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
cm.set_key(candidate_for_train_test, '_id')
cm.set_fk_ltable(candidate_for_train_test, 'ltable_id')
cm.set_fk_rtable(candidate_for_train_test, 'rtable_id')
cm.set_ltable(candidate_for_train_test, selected_Amazon)
cm.set_rtable(candidate_for_train_test, selected_Google)
# 分为训练测试集
train_proportion = 0.7
test_proportion = 0.3
sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0)
train_set = sets['train']
test_set = sets['test']
rf = em.RFMatcher(name='RF', random_state=0)
feature_table = em.get_features_for_matching(selected_Amazon, selected_Google, validate_inferred_attr_types=False)
train_feature_vecs = em.extract_feature_vecs(train_set,
feature_table=feature_table,
attrs_after=['gold'],
show_progress=False)
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
attrs_after=['ltable_title', 'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name', 'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'], show_progress=False)
# todo 参数可调 用drop删除特征向量中的列
# 1.exclude_attrs
# 去掉id相关的相似度
rf.fit(table=train_feature_vecs,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
target_attr='gold')
# 1.exclude_attrs
predictions = rf.predict(table=test_feature_vecs, exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'ltable_title',
'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name', 'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'],
append=True, target_attr='predicted', inplace=False)
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result)
indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, test_proportion)
print(indicators)
# 计算可解释性
predictions = predictions[
['ltable_id', 'rtable_id', 'ltable_name', 'ltable_description', 'ltable_manufacturer', 'ltable_price',
'rtable_name', 'rtable_description', 'rtable_manufacturer', 'rtable_price', 'gold', 'predicted']]
epl_match = 0 # 可解释预测match
nepl_mismatch = 0 # 不可解释预测mismatch
md_list = load_mds(md_paths) # 从全局变量中读取所有的md
for row in predictions.itertuples():
if is_explicable(row, md_list):
if getattr(row, 'predicted') == 1:
epl_match += 1
else:
if getattr(row, 'predicted') == 0:
nepl_mismatch += 1
epl_ability = (epl_match + nepl_mismatch) / len(predictions) # 可解释性
f1 = indicators['F1']
performance = 0.5 * epl_ability + 0.5 * f1 # 可解释性与F1的权重暂时定为0.5
# todo 权重用户可调
return 1 - performance
if __name__ == "__main__":
classifier = SVM()
# Next, we create an object, holding general information about the run
scenario = Scenario(
classifier.configspace,
n_trials=12, # We want to run max 50 trials (combination of config and seed)
)
initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=3)
# Now we use SMAC to find the best hyperparameters
smac = HyperparameterOptimizationFacade(
scenario,
classifier.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
# Get cost of default configuration
default_cost = smac.validate(classifier.configspace.get_default_configuration())
print(f"Default cost: {default_cost}")
# Let's calculate the cost of the incumbent
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")
print(f"Configuration:{incumbent.values()}")
print(f"MAX_F1:{1-classifier.train(incumbent)}")

@ -38,7 +38,7 @@ def if_minimal(md, md_list, target_col):
def remove_by_confidence(md, l, relation, target_col, lock): def remove_by_confidence(md, l, relation, target_col, lock):
support, confidence = get_one_md_metadata(md, relation, target_col) support, confidence = get_one_md_metadata(md, relation, target_col)
# todo: replace constant 0.8 # todo confidence可调
if confidence < 0.8: if confidence < 0.8:
with lock: with lock:
l.remove(md) l.remove(md)

@ -0,0 +1,67 @@
import time
from md_discovery.functions.multi_process_infer_by_pairs import inference_from_record_pairs
from md_discovery.functions.multi_process_infer_by_pairs import get_mds_metadata
# # 若不输出support和confidence使用以下两块代码
# # 将列表1写入本地路径需自己修改
# md_path = '/home/w/A-New Folder/8.14/Paper Dataset/TP_md_list.txt'
# with open(md_path, 'w') as f:
# for _ in mds:
# f.write(str(_) + '\n')
#
# # 将列表2写入本地路径需自己修改
# vio_path = '/home/w/A-New Folder/8.14/Paper Dataset/TP_vio_list.txt'
# with open(vio_path, 'w') as f:
# for _ in vio:
# f.write(str(_) + '\n')
if __name__ == '__main__':
# 目前可以仿照这个main函数写
tp_single_tuple_path = "../../ml_er/output/tp_single_tuple.csv"
fn_single_tuple_path = "../../ml_er/output/fn_single_tuple.csv"
# 输入csv文件路径md左侧相似度阈值md右侧目标字段
# 输出2个md列表列表1中md无violation,列表2中md有violation但confidence满足阈值(0.8)
# 例如此处输入参数要求md左侧相似度字段至少为0.7,右侧指向'id'字段
tp_mds, tp_vio = inference_from_record_pairs(tp_single_tuple_path, 0.7, 'id')
fn_mds, fn_vio = inference_from_record_pairs(fn_single_tuple_path, 0.7, 'id')
# 如果不需要输出support和confidence去掉下面两行
tp_mds_meta = get_mds_metadata(tp_mds, tp_single_tuple_path, 'id')
tp_vio_meta = get_mds_metadata(tp_vio, tp_single_tuple_path, 'id')
fn_mds_meta = get_mds_metadata(fn_mds, fn_single_tuple_path, 'id')
fn_vio_meta = get_mds_metadata(fn_vio, fn_single_tuple_path, 'id')
# 若输出support和confidence使用以下两块代码
# 将列表1写入本地路径需自己修改
tp_mds_path = "../output/tp_mds.txt"
tp_vio_path = "../output/tp_vio.txt"
with open(tp_mds_path, 'w') as f:
for _ in tp_mds_meta:
for i in _.keys():
f.write(i + ':' + str(_[i]) + '\t')
f.write('\n')
with open(tp_vio_path, 'w') as f:
for _ in tp_vio_meta:
for i in _.keys():
f.write(i + ':' + str(_[i]) + '\t')
f.write('\n')
fn_mds_path = "../output/fn_mds.txt"
fn_vio_path = "../output/fn_vio.txt"
with open(fn_mds_path, 'w') as f:
for _ in fn_mds_meta:
for i in _.keys():
f.write(i + ':' + str(_[i]) + '\t')
f.write('\n')
with open(fn_vio_path, 'w') as f:
for _ in fn_vio_meta:
for i in _.keys():
f.write(i + ':' + str(_[i]) + '\t')
f.write('\n')

@ -0,0 +1,153 @@
import sys
from py_entitymatching.debugmatcher.debug_gui_utils import _get_metric
sys.path.append('/home/w/PycharmProjects/py_entitymatching/py_entitymatching')
import py_entitymatching as em
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
import time
import six
def load_data(left_path: str, right_path: str, mapping_path: str):
left = pd.read_csv(left_path, encoding='ISO-8859-1')
cm.set_key(left, left.columns.values.tolist()[0])
left.fillna("", inplace=True)
left = left.astype(str)
right = pd.read_csv(right_path, encoding='ISO-8859-1')
cm.set_key(right, right.columns.values.tolist()[0])
right.fillna("", inplace=True)
right = right.astype(str)
mapping = pd.read_csv(mapping_path)
mapping = mapping.astype(str)
return left, right, mapping
if __name__ == '__main__':
# 读入公开数据,注册并填充空值
path_Amazon = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amazon.csv'
path_Google = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/GoogleProducts.csv'
path_Mappings = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amzon_GoogleProducts_perfectMapping.csv'
Amazon = pd.read_csv(path_Amazon, encoding='ISO-8859-1')
cm.set_key(Amazon, 'id')
Amazon.fillna("", inplace=True)
Google = pd.read_csv(path_Google, encoding='ISO-8859-1')
cm.set_key(Google, 'id')
Google.fillna("", inplace=True)
Mappings = pd.read_csv(path_Mappings)
# 仅保留两表中出现在映射表中的行,增大正样本比例
l_id_list = []
r_id_list = []
# 全部转为字符串
Amazon = Amazon.astype(str)
Google = Google.astype(str)
Mappings = Mappings.astype(str)
for index, row in Mappings.iterrows():
l_id_list.append(row["idAmazon"])
r_id_list.append(row["idGoogleBase"])
selected_Amazon = Amazon[Amazon['id'].isin(l_id_list)]
selected_Amazon = selected_Amazon.rename(columns={'title': 'name'})
selected_Google = Google[Google['id'].isin(r_id_list)]
cm.set_key(selected_Amazon, 'id')
cm.set_key(selected_Google, 'id')
#########################################################################
# False-retain True-remove
def match_last_name(ltuple, rtuple):
l_last_name = ltuple['name']
r_last_name = rtuple['name']
if l_last_name != r_last_name:
return True
else:
return False
bb = em.BlackBoxBlocker()
bb.set_black_box_function(match_last_name)
Candidate = bb.block_tables(selected_Amazon, selected_Google, l_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'], r_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'])
#########################################################################
# block 并将gold标记为0
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_Amazon, selected_Google, 'name', 'name',
l_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'],
r_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'],
overlap_size=0, show_progress=False)
candidate['gold'] = 0
start = time.time()
candidate_match_rows = []
for index, row in candidate.iterrows():
l_id = row["ltable_id"]
map_row = Mappings[Mappings['idAmazon'] == l_id]
if map_row is not None:
r_id = map_row["idGoogleBase"]
for value in r_id:
if value == row["rtable_id"]:
candidate_match_rows.append(row["_id"])
else:
continue
for row in candidate_match_rows:
candidate.loc[row, 'gold'] = 1
# 裁剪负样本,保持正负样本数量一致
candidate_mismatch = candidate[candidate['gold'] == 0]
candidate_match = candidate[candidate['gold'] == 1]
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
# 拼接正负样本
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
cm.set_key(candidate_for_train_test, '_id')
cm.set_fk_ltable(candidate_for_train_test, 'ltable_id')
cm.set_fk_rtable(candidate_for_train_test, 'rtable_id')
cm.set_ltable(candidate_for_train_test, selected_Amazon)
cm.set_rtable(candidate_for_train_test, selected_Google)
# 分为训练测试集
sets = em.split_train_test(candidate_for_train_test, train_proportion=0.7, random_state=0)
train_set = sets['train']
test_set = sets['test']
dt = em.DTMatcher(name='DecisionTree', random_state=0)
svm = em.SVMMatcher(name='SVM', random_state=0)
rf = em.RFMatcher(name='RF', random_state=0)
lg = em.LogRegMatcher(name='LogReg', random_state=0)
ln = em.LinRegMatcher(name='LinReg')
nb = em.NBMatcher(name='NaiveBayes')
feature_table = em.get_features_for_matching(selected_Amazon, selected_Google, validate_inferred_attr_types=False)
train_feature_vecs = em.extract_feature_vecs(train_set,
feature_table=feature_table,
attrs_after='gold',
show_progress=False)
result = em.select_matcher([dt, rf, svm, ln, lg, nb], table=train_feature_vecs,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
k=5,
target_attr='gold', metric_to_select_matcher='f1', random_state=0)
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
attrs_after=['ltable_name', 'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name', 'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'], show_progress=False)
rf.fit(table=train_feature_vecs,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
target_attr='gold')
predictions = rf.predict(table=test_feature_vecs, exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'ltable_name',
'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name', 'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'],
append=True, target_attr='predicted', inplace=False)
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result)
output_path = "output/eval_result" + str(time.time()) + ".txt"
with open(output_path, 'w') as f:
for key, value in six.iteritems(_get_metric(eval_result)):
f.write(key + " : " + value)
f.write('\n')

@ -0,0 +1,273 @@
import sys
from py_entitymatching.debugmatcher.debug_gui_utils import _get_metric
sys.path.append('/home/w/PycharmProjects/py_entitymatching/py_entitymatching')
import py_entitymatching as em
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
import time
import six
from md_discovery.functions.multi_process_infer_by_pairs import my_Levenshtein_ratio
def process_prediction_for_md_discovery(pred: pd.DataFrame, tp_single_tuple_path: str = "output/tp_single_tuple.csv", fn_single_tuple_path: str = "output/fn_single_tuple.csv"):
tp = pred[(pred['gold'] == 1) & (pred['predicted'] == 1)]
fn = pred[(pred['gold'] == 1) & (pred['predicted'] == 0)]
# 将真阳/假阴表中左右ID调整一致
for index, row in tp.iterrows():
tp.loc[index, "rtable_id"] = row["ltable_id"]
for index, row in fn.iterrows():
fn.loc[index, "rtable_id"] = row["ltable_id"]
pred_columns = pred.columns.values.tolist()
l_columns = []
r_columns = []
columns = [] # todo 前提是两张表内对应字段名调整一致
for _ in pred_columns:
if _.startswith('ltable'):
l_columns.append(_)
elif _.startswith('rtable'):
r_columns.append(_)
for _ in l_columns:
columns.append(_.replace('ltable_', ''))
tpl = tp[l_columns]
tpr = tp[r_columns]
tpl.columns = columns
tpr.columns = columns
fnl = fn[l_columns]
fnr = fn[r_columns]
fnl.columns = columns
fnr.columns = columns
tp_single_tuple = pd.concat([tpl, tpr])
fn_single_tuple = pd.concat([fnl, fnr])
tp_single_tuple.to_csv(tp_single_tuple_path, sep=',', index=False, header=True)
fn_single_tuple.to_csv(fn_single_tuple_path, sep=',', index=False, header=True)
def evaluate_prediction(df: pd.DataFrame, labeled_attr: str, predicted_attr: str, matching_number: int,
test_proportion: float) -> dict:
new_df = df.reset_index(drop=False, inplace=False)
gold = new_df[labeled_attr]
predicted = new_df[predicted_attr]
gold_negative = gold[gold == 0].index.values
gold_positive = gold[gold == 1].index.values
predicted_negative = predicted[predicted == 0].index.values
predicted_positive = predicted[predicted == 1].index.values
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
num_true_positives = float(len(true_positive_indices))
num_false_positives = float(len(false_positive_indices))
num_false_negatives = float(len(false_negative_indices))
precision_denominator = num_true_positives + num_false_positives
recall_denominator = num_true_positives + num_false_negatives
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
my_recall = num_true_positives / (matching_number * test_proportion)
return {"precision": precision, "recall": recall, "F1": F1, "my_recall": my_recall}
def load_mds(paths: list) -> list:
if len(paths) == 0:
return []
all_mds = []
# 传入md路径列表
for md_path in paths:
mds = []
# 打开每一个md文件
with open(md_path, 'r') as f:
# 读取每一行的md加入该文件的md列表
for line in f.readlines():
md_metadata = line.strip().split('\t')
md = eval(md_metadata[0].replace('md:', ''))
mds.append(md)
all_mds.extend(mds)
return all_mds
def is_explicable(row, all_mds: list) -> bool:
attrs = all_mds[0].keys() # 从第一条md中读取所有字段
for md in all_mds:
explicable = True # 假设这条md能解释当前元组
for a in attrs:
threshold = md[a]
if my_Levenshtein_ratio(str(getattr(row, 'ltable_'+a)), str(getattr(row, 'rtable_'+a))) < threshold:
explicable = False # 任意一个字段的相似度达不到阈值这条md就不能解释当前元组
break # 不再与当前md的其他相似度阈值比较跳转到下一条md
if explicable:
return True # 任意一条md能解释直接返回
return False # 遍历结束,不能解释
def load_data(left_path: str, right_path: str, mapping_path: str):
left = pd.read_csv(left_path, encoding='ISO-8859-1')
cm.set_key(left, left.columns.values.tolist()[0])
left.fillna("", inplace=True)
left = left.astype(str)
right = pd.read_csv(right_path, encoding='ISO-8859-1')
cm.set_key(right, right.columns.values.tolist()[0])
right.fillna("", inplace=True)
right = right.astype(str)
mapping = pd.read_csv(mapping_path)
mapping = mapping.astype(str)
return left, right, mapping
if __name__ == '__main__':
# 读入公开数据,注册并填充空值
path_Amazon = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amazon.csv'
path_Google = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/GoogleProducts.csv'
path_Mappings = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amzon_GoogleProducts_perfectMapping.csv'
Amazon = pd.read_csv(path_Amazon, encoding='ISO-8859-1')
cm.set_key(Amazon, 'id')
Amazon.fillna("", inplace=True)
Google = pd.read_csv(path_Google, encoding='ISO-8859-1')
cm.set_key(Google, 'id')
Google.fillna("", inplace=True)
Mappings = pd.read_csv(path_Mappings)
# 仅保留两表中出现在映射表中的行,增大正样本比例
l_id_list = []
r_id_list = []
# 全部转为字符串
Amazon = Amazon.astype(str)
Google = Google.astype(str)
Mappings = Mappings.astype(str)
matching_number = len(Mappings) # 所有阳性样本数商品数据集应为1300
for index, row in Mappings.iterrows():
l_id_list.append(row["idAmazon"])
r_id_list.append(row["idGoogleBase"])
selected_Amazon = Amazon[Amazon['id'].isin(l_id_list)]
selected_Amazon = selected_Amazon.rename(columns={'title': 'name'})
selected_Google = Google[Google['id'].isin(r_id_list)]
cm.set_key(selected_Amazon, 'id')
cm.set_key(selected_Google, 'id')
# block 并将gold标记为0
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_Amazon, selected_Google, 'name', 'name',
l_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'],
r_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'],
overlap_size=1, show_progress=False)
candidate['gold'] = 0
start = time.time()
candidate_match_rows = []
for index, row in candidate.iterrows():
l_id = row["ltable_id"]
map_row = Mappings[Mappings['idAmazon'] == l_id]
if map_row is not None:
r_id = map_row["idGoogleBase"]
for value in r_id:
if value == row["rtable_id"]:
candidate_match_rows.append(row["_id"])
else:
continue
for row in candidate_match_rows:
candidate.loc[row, 'gold'] = 1
# 裁剪负样本,保持正负样本数量一致
candidate_mismatch = candidate[candidate['gold'] == 0]
candidate_match = candidate[candidate['gold'] == 1]
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
# 拼接正负样本
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
cm.set_key(candidate_for_train_test, '_id')
cm.set_fk_ltable(candidate_for_train_test, 'ltable_id')
cm.set_fk_rtable(candidate_for_train_test, 'rtable_id')
cm.set_ltable(candidate_for_train_test, selected_Amazon)
cm.set_rtable(candidate_for_train_test, selected_Google)
# 分为训练测试集
train_proportion = 0.7
test_proportion = 0.3
sets = em.split_train_test(candidate_for_train_test, train_proportion=0.7, random_state=0)
train_set = sets['train']
test_set = sets['test']
dt = em.DTMatcher(name='DecisionTree', random_state=0)
svm = em.SVMMatcher(name='SVM', random_state=0)
rf = em.RFMatcher(name='RF', random_state=0)
lg = em.LogRegMatcher(name='LogReg', random_state=0)
ln = em.LinRegMatcher(name='LinReg')
nb = em.NBMatcher(name='NaiveBayes')
feature_table = em.get_features_for_matching(selected_Amazon, selected_Google, validate_inferred_attr_types=False)
train_feature_vecs = em.extract_feature_vecs(train_set,
feature_table=feature_table,
attrs_after=['gold'],
show_progress=False)
result = em.select_matcher([dt, rf, svm, ln, lg, nb], table=train_feature_vecs,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
k=5,
target_attr='gold', metric_to_select_matcher='f1', random_state=0)
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
attrs_after=['ltable_name', 'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name', 'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'],
show_progress=False)
rf.fit(table=train_feature_vecs,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
target_attr='gold')
predictions = rf.predict(table=test_feature_vecs, exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'ltable_name',
'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name',
'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'],
append=True, target_attr='predicted', inplace=False)
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result)
indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, test_proportion)
print(indicators)
# 计算可解释性
################################################################################################################
predictions = predictions[
['ltable_id', 'rtable_id', 'ltable_name', 'ltable_description', 'ltable_manufacturer', 'ltable_price',
'rtable_name', 'rtable_description', 'rtable_manufacturer', 'rtable_price', 'gold', 'predicted']]
epl_match = 0 # 可解释预测match
nepl_mismatch = 0 # 不可解释预测mismatch
p_md = "/home/w/A-New Folder/8.14/Goods Dataset/TP_md_list.txt"
p_vio = "/home/w/A-New Folder/8.14/Goods Dataset/TP_vio_list.txt"
md_paths: list = [p_md, p_vio]
md_list = load_mds(md_paths) # 从全局变量中读取所有的md
for row in predictions.itertuples():
if is_explicable(row, md_list):
if getattr(row, 'predicted') == 1:
epl_match += 1
else:
if getattr(row, 'predicted') == 0:
nepl_mismatch += 1
epl_ability = (epl_match + nepl_mismatch) / len(predictions)
################################################################################################################
process_prediction_for_md_discovery(predictions)
# todo 将prediction表处理成真阳/假阴表提供给挖掘算法
output_path = "output/eval_result" + str(time.time()) + ".txt"
with open(output_path, 'w') as f:
for key, value in six.iteritems(_get_metric(eval_result)):
f.write(key + " : " + value)
f.write('\n')
f.write('my_recall:' + str(indicators["my_recall"]))
f.write('\n')

@ -1,48 +0,0 @@
import time
from functions.multi_process_infer_by_pairs import inference_from_record_pairs
from functions.multi_process_infer_by_pairs import get_mds_metadata
if __name__ == '__main__':
# 目前可以仿照这个main函数写
path = "/home/w/PycharmProjects/matching_dependency/input/T_positive_with_id_concat_single_tuple.csv"
start = time.time()
# 输入csv文件路径md左侧相似度阈值md右侧目标字段
# 输出2个md列表列表1中md无violation,列表2中md有violation但confidence满足阈值(0.8)
# 例如此处输入参数要求md左侧相似度字段至少为0.7,右侧指向'id'字段
mds, mds_vio = inference_from_record_pairs(path, 0.1, 'id_concat')
# 如果不需要输出support和confidence去掉下面两行
mds_meta = get_mds_metadata(mds, path, 'id_concat')
mds_vio_meta = get_mds_metadata(mds_vio, path, 'id_concat')
# # 若不输出support和confidence使用以下两块代码
# # 将列表1写入本地路径需自己修改
# md_path = '/home/w/A-New Folder/8.14/Paper Dataset/TP_md_list.txt'
# with open(md_path, 'w') as f:
# for _ in mds:
# f.write(str(_) + '\n')
#
# # 将列表2写入本地路径需自己修改
# vio_path = '/home/w/A-New Folder/8.14/Paper Dataset/TP_vio_list.txt'
# with open(vio_path, 'w') as f:
# for _ in mds_vio:
# f.write(str(_) + '\n')
# 若输出support和confidence使用以下两块代码
# 将列表1写入本地路径需自己修改
md_path = "output/md.txt"
with open(md_path, 'w') as f:
for _ in mds_meta:
for i in _.keys():
f.write(i + ':' + str(_[i]) + '\t')
f.write('\n')
# 将列表2写入本地路径需自己修改
vio_path = "output/vio.txt"
with open(vio_path, 'w') as f:
for _ in mds_vio_meta:
for i in _.keys():
f.write(i + ':' + str(_[i]) + '\t')
f.write('\n')
print(time.time() - start)
Loading…
Cancel
Save