Compare commits

...

2 Commits

Author SHA1 Message Date
HuangJintao c1e07eabb6 commit
7 months ago
HuangJintao 9b06ce3840 commit
8 months ago

4
.gitignore vendored

@ -2,3 +2,7 @@
/ml_er/output/*
/md_discovery/output/*
/hpo/output/*
tfile.py
table_embedding.py
set_none.py
generate_matches.py

@ -39,6 +39,7 @@ if __name__ == '__main__':
.set_global_opts(
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
title_opts=opts.TitleOpts(title="各数据集F1值与预测结果可解释比例", subtitle="可解释性比重0.5"),
# yaxis_opts=opts.AxisOpts(min_=0.95) # 设置y轴起始点
)
.render("output/F1_Inter_bars.html")
)

@ -1,21 +0,0 @@
import csv
import pandas as pd
import json
import sentence_transformers.util
import torch
from sentence_transformers import SentenceTransformer
from torch import nn
if __name__ == '__main__':
directory = r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-ACM_dirty'
train = pd.read_csv(directory + r'\train.csv', encoding='ISO-8859-1')
valid = pd.read_csv(directory + r'\valid.csv', encoding='ISO-8859-1')
test = pd.read_csv(directory + r'\test.csv', encoding='ISO-8859-1')
train = train[train['label'] == 1]
valid = valid[valid['label'] == 1]
test = test[test['label'] == 1]
matches = pd.concat([train, valid, test])
matches.drop(columns=['label'], inplace=True)
matches = matches.sort_values(by='ltable_id')
matches.to_csv(directory + r'\matches.csv', sep=',', index=False, header=True)

@ -1,73 +0,0 @@
import json
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float
from ConfigSpace.conditions import InCondition
from ConfigSpace.read_and_write import json as csj
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
from smac import HyperparameterOptimizationFacade, Scenario
from settings import *
from ml_er.ml_entity_resolver import er_process
class Classifier:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf", "lg", "ln", "nb"], default="rf")
# todo 每个分类器的超参数
tree_criterion = Categorical("dt_criterion", ["gini", "entropy", "log_loss"], default="gini")
cs.add_hyperparameters([ml_matcher])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
cm.del_catalog()
indicators = er_process(config)
return 1-indicators['performance']
def ml_er_hpo():
classifier = Classifier()
cs = classifier.configspace
str_configspace = csj.write(cs)
dict_configspace = json.loads(str_configspace)
with open(hpo_output_dir + "configspace.json", "w") as f:
json.dump(dict_configspace, f, indent=4)
scenario = Scenario(
cs,
deterministic=True,
n_trials=12, # We want to run max 50 trials (combination of config and seed)
n_workers=1
)
initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=5)
smac = HyperparameterOptimizationFacade(
scenario,
classifier.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
incumbent_cost = smac.validate(incumbent)
default = cs.get_default_configuration()
default_cost = smac.validate(default)
print(f"Default Cost: {default_cost}")
print(f"Incumbent Cost: {incumbent_cost}")
if incumbent_cost > default_cost:
incumbent = default
print(f"Updated Incumbent Cost: {default_cost}")
print(f"Optimized Configuration:{incumbent.values()}")
with open(hpo_output_dir + "incumbent.json", "w") as f:
json.dump(dict(incumbent), f, indent=4)
return incumbent
if __name__ == '__main__':
ml_er_hpo()

@ -0,0 +1,115 @@
import json
import pickle
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float
from ConfigSpace.conditions import InCondition, EqualsCondition, AndConjunction
from ConfigSpace.read_and_write import json as csj
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
from smac import HyperparameterOptimizationFacade, Scenario
from ml_er.magellan_new import matching
from settings import *
class Classifier:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf"])
# note 以tree开头的超参数是DT和RF共用的
tree_criterion = Categorical("tree_criterion", ["gini", "entropy", "log_loss"], default="gini")
rf_n_estimators = Integer('number_of_tree', (10, 150))
tree_max_depth = Integer('tree_max_depth', (15, 30), default=None)
rf_max_features = Categorical('rf_max_features', ["sqrt", "log2", "auto"], default='sqrt')
svm_kernel = Categorical('svm_kernel', ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'], default='rbf')
svm_C = Integer('svm_C', (1, 100), default=1)
svm_gamma = Categorical('svm_gamma', ['scale', 'auto'], default='scale')
svm_degree = Integer('svm_degree', (1, 3), default=3)
svm_constant = Float('svm_constant', (0.0, 5.0), default=0.0)
dt_splitter = Categorical('dt_splitter', ["best", "random"], default='best')
dt_max_features = Categorical('dt_max_features', ["auto", "sqrt", "log2"], default=None)
cs.add_hyperparameters([ml_matcher, tree_criterion, rf_n_estimators, tree_max_depth, rf_max_features,
svm_kernel, svm_C, svm_gamma, svm_degree, svm_constant, dt_splitter, dt_max_features])
active_tree_criterion = InCondition(child=tree_criterion, parent=ml_matcher, values=['dt', 'rf'])
active_tree_max_depth = InCondition(child=tree_max_depth, parent=ml_matcher, values=['dt', 'rf'])
active_rf_n_estimators = EqualsCondition(child=rf_n_estimators, parent=ml_matcher, value="rf")
active_rf_max_features = EqualsCondition(child=rf_max_features, parent=ml_matcher, value="rf")
active_dt_splitter = EqualsCondition(child=dt_splitter, parent=ml_matcher, value="dt")
active_dt_max_features = EqualsCondition(child=dt_max_features, parent=ml_matcher, value="dt")
active_svm_kernel = EqualsCondition(child=svm_kernel, parent=ml_matcher, value="svm")
active_svm_C = EqualsCondition(child=svm_C, parent=ml_matcher, value="svm")
active_svm_gamma1 = EqualsCondition(child=svm_gamma, parent=ml_matcher, value="svm")
active_svm_degree1 = EqualsCondition(child=svm_degree, parent=ml_matcher, value="svm")
active_svm_constant1 = EqualsCondition(child=svm_constant, parent=ml_matcher, value="svm")
active_svm_gamma2 = InCondition(child=svm_gamma, parent=svm_kernel, values=["rbf", "poly", "sigmoid"])
active_svm_degree2 = EqualsCondition(child=svm_degree, parent=svm_kernel, value="poly")
active_svm_constant2 = InCondition(child=svm_constant, parent=svm_kernel, values=["poly", "sigmoid"])
cs.add_conditions([active_svm_C, active_svm_kernel, active_dt_splitter, active_rf_n_estimators,
active_dt_max_features, active_rf_max_features, active_tree_max_depth, active_tree_criterion,
AndConjunction(active_svm_gamma1, active_svm_gamma2),
AndConjunction(active_svm_degree1, active_svm_degree2),
AndConjunction(active_svm_constant1, active_svm_constant2)])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
cm.del_catalog()
with open(er_output_dir + "blocking_result.pickle", "rb") as file:
blocking_result = pickle.load(file)
indicators = matching(config, blocking_result)
return 1 - indicators['performance']
def ml_er_hpo():
classifier = Classifier()
cs = classifier.configspace
str_configspace = csj.write(cs)
dict_configspace = json.loads(str_configspace)
# 将超参数空间保存本地
with open(hpo_output_dir + "configspace.json", "w") as f:
json.dump(dict_configspace, f, indent=4)
scenario = Scenario(
cs,
crash_cost=1.0,
deterministic=True,
n_trials=20,
n_workers=1
)
initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=5)
smac = HyperparameterOptimizationFacade(
scenario,
classifier.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
incumbent_cost = smac.validate(incumbent)
default = cs.get_default_configuration()
default_cost = smac.validate(default)
print(f"Default Cost: {default_cost}")
print(f"Incumbent Cost: {incumbent_cost}")
if incumbent_cost > default_cost:
incumbent = default
print(f"Updated Incumbent Cost: {default_cost}")
print(f"Optimized Configuration:{incumbent.values()}")
with open(hpo_output_dir + "incumbent.json", "w") as f:
json.dump(dict(incumbent), f, indent=4)
return incumbent
if __name__ == '__main__':
ml_er_hpo()

@ -1,5 +1,8 @@
import itertools
import random
import operator
from operator import itemgetter
import pandas as pd
import torch
import matplotlib.pyplot as plt
@ -41,12 +44,12 @@ def mining(train: pd.DataFrame):
sim_tensor_list = []
for col_tuple in col_tuple_list:
mask = ((data[columns[col_tuple[0]]].isin([''])) | (data[columns[col_tuple[1]]].isin([''])))
empty_string_indices = data[mask].index.tolist()
empty_string_indices = data[mask].index.tolist() # 空字符串索引
lattr_tensor = norm_table_tensor[col_tuple[0]]
rattr_tensor = norm_table_tensor[col_tuple[1]]
mul_tensor = lattr_tensor * rattr_tensor
sim_tensor = torch.sum(mul_tensor, 1)
sim_tensor = torch.sum(mul_tensor, 1) # 求和得到对应属性2列张量相似度, 2列变1列
# 将有空字符串的位置强制置为-1.0000
sim_tensor = sim_tensor.scatter(0, torch.tensor(empty_string_indices, device='cuda').long(), -1.0000)
sim_tensor = torch.round(sim_tensor, decimals=2)
@ -86,7 +89,12 @@ def mining(train: pd.DataFrame):
for k in range(0, len(columns_without_prefix)):
md_dict_format[columns_without_prefix[k]] = md_list_format[k]
result_list.append((md_dict_format, abs_support, confidence))
result_list.sort(key=operator.itemgetter(2), reverse=True)
# result_list.sort(key=itemgetter(2), reverse=True)
# 按confidence->support的优先级排序
result_list.sort(key=itemgetter(2, 1), reverse=True)
result_list = merge_mds(result_list)
result_list.sort(key=itemgetter(2, 1), reverse=True)
# 保存到本地
mds_to_txt(result_list)
return result_list
@ -206,3 +214,42 @@ def mds_to_txt(result_list_):
for _ in result_list_:
f.write(f'MD: {str(_[0])}\tAbsolute Support: {str(_[1])}\tConfidence: {str(_[2])}')
f.write('\n')
# 合并一些MD
def merge_mds(md_list_):
# 创建一个空字典用于分组
grouped_md_tuples = {}
# 遍历三元组并对它们进行分组
for md_tuple in md_list_:
# 提取Support和Confidence的值作为字典的键
key = (md_tuple[1], md_tuple[2])
# 检查键是否已经存在于分组字典中
if key in grouped_md_tuples:
# 如果存在,将三元组添加到对应的列表中
grouped_md_tuples[key].append(md_tuple)
else:
# 如果不存在,创建一个新的键值对
grouped_md_tuples[key] = [md_tuple]
# 不要键只要值
# 一个二级列表, 每个子列表中MD tuple的support和confidence一样
grouped_md_tuples = list(grouped_md_tuples.values())
for same_sc_list in grouped_md_tuples:
# 创建一个索引列表,用于标记需要删除的元组
indices_to_remove = []
# 获取元组列表的长度
length = len(same_sc_list)
# 遍历元组列表,进行比较和删除操作
for i in range(length):
for j in range(length):
# 比较两个元组的字典值
if i != j and all(same_sc_list[i][0][key_] >= same_sc_list[j][0][key_] for key_ in same_sc_list[i][0]):
# 如果同组内一个MD的所有相似度阈值都大于等于另一个MD, 则前者可以删除
indices_to_remove.append(i)
break # 由于列表大小会变化,跳出内层循环
# 根据索引列表逆序删除元组,以避免在删除时改变列表大小
for index in sorted(indices_to_remove, reverse=True):
del same_sc_list[index]
# 二级列表转一级列表
return list(itertools.chain.from_iterable(grouped_md_tuples))

@ -1,6 +1,14 @@
import json
import os
import pickle
import time
import ConfigSpace
import pandas as pd
import py_entitymatching as em
import torch
from ConfigSpace import Configuration
from ConfigSpace.read_and_write import json as csj
import py_entitymatching.catalog.catalog_manager as cm
from tqdm import tqdm
@ -16,17 +24,17 @@ def blocking_mining():
cm.set_key(rtable, rtable_id)
mappings = pd.read_csv(mapping_path, encoding='ISO-8859-1')
matching_number = len(mappings)
if ltable_id == rtable_id:
tables_id = rtable_id
# if ltable_id == rtable_id:
# tables_id = rtable_id
attributes = ltable.columns.values.tolist()
lattributes = ['ltable_' + i for i in attributes]
rattributes = ['rtable_' + i for i in attributes]
# lattributes = ['ltable_' + i for i in attributes]
# rattributes = ['rtable_' + i for i in attributes]
cm.set_key(ltable, ltable_id)
cm.set_key(rtable, rtable_id)
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(ltable, rtable, ltable_block_attr, rtable_block_attr, allow_missing=True,
l_output_attrs=attributes, r_output_attrs=attributes, n_jobs=-1,
l_output_attrs=attributes, r_output_attrs=attributes, n_jobs=1,
overlap_size=1, show_progress=False)
candidate['gold'] = 0
candidate = candidate.reset_index(drop=True)
@ -44,6 +52,7 @@ def blocking_mining():
candidate.loc[match_rows_mask, 'gold'] = 1
candidate.fillna(value="", inplace=True)
# negative样本太多, 采样三倍于positive样本量
candidate_mismatch = candidate[candidate['gold'] == 0]
candidate_match = candidate[candidate['gold'] == 1]
candidate_mismatch = candidate_mismatch.sample(n=3*len(candidate_match))
@ -65,15 +74,208 @@ def blocking_mining():
label_and_split_time = time.time()
print(f'Label and Split Time: {label_and_split_time - block_time}')
mining(train_set)
# 挖掘MD并保存本地
md_list = mining(train_set)
mining_time = time.time()
print(f'Mining Time: {mining_time - label_and_split_time}')
return 1
blocking_results = (ltable, rtable, train_set, test_set, md_list, block_recall)
# 将blocking结果保存到本地
with open(er_output_dir + "blocking_result.pickle", "wb") as file_:
pickle.dump(blocking_results, file_)
return blocking_results
def matching(config: Configuration, blocking_result_):
print(f'\033[33mConfig: {config}\033[0m')
start = time.time()
ltable = blocking_result_[0]
rtable = blocking_result_[1]
train_set = blocking_result_[2]
test_set = blocking_result_[3]
md_list = blocking_result_[4]
block_recall = blocking_result_[5]
ml_matcher = config["ml_matcher"]
match ml_matcher:
case "dt":
matcher = em.DTMatcher(name='DecisionTree', random_state=0, criterion=config['tree_criterion'],
max_depth=config['tree_max_depth'], splitter=config['dt_splitter'],
max_features=config['dt_max_features'])
case "svm":
matcher = em.SVMMatcher(name='SVM', random_state=0, kernel=config['svm_kernel'], degree=config['svm_degree'],
gamma=config['svm_gamma'], C=config['svm_C'], coef0=config['svm_constant'])
case "rf":
matcher = em.RFMatcher(name='RandomForest', random_state=0, criterion=config['tree_criterion'],
max_depth=config['tree_max_depth'], n_estimators=config['number_of_tree'],
max_features=config['rf_max_features'])
cm.set_key(train_set, '_id')
cm.set_fk_ltable(train_set, 'ltable_' + ltable_id)
cm.set_fk_rtable(train_set, 'rtable_' + rtable_id)
cm.set_ltable(train_set, ltable)
cm.set_rtable(train_set, rtable)
cm.set_key(ltable, ltable_id)
cm.set_key(rtable, rtable_id)
cm.set_key(test_set, '_id')
cm.set_fk_ltable(test_set, 'ltable_' + ltable_id)
cm.set_fk_rtable(test_set, 'rtable_' + rtable_id)
cm.set_ltable(test_set, ltable)
cm.set_rtable(test_set, rtable)
feature_table = em.get_features_for_matching(ltable, rtable, validate_inferred_attr_types=False)
train_feature_vecs = em.extract_feature_vecs(train_set,
feature_table=feature_table,
attrs_after=['gold'],
show_progress=False)
train_feature_vecs.fillna(value=0, inplace=True)
test_feature_after = ['ltable_' + i for i in ltable.columns.values.tolist()]
for _ in test_feature_after[:]:
test_feature_after.append(_.replace('ltable_', 'rtable_'))
for _ in test_feature_after:
if _.endswith(ltable_id) or _.endswith(rtable_id):
test_feature_after.remove(_)
test_feature_after.append('gold')
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
attrs_after=test_feature_after, show_progress=False)
test_feature_vecs.fillna(value=0, inplace=True)
fit_exclude = ['_id', 'ltable_' + ltable_id, 'rtable_' + rtable_id, 'gold']
matcher.fit(table=train_feature_vecs, exclude_attrs=fit_exclude, target_attr='gold')
test_feature_after.extend(['_id', 'ltable_' + ltable_id, 'rtable_' + rtable_id])
predictions = matcher.predict(table=test_feature_vecs, exclude_attrs=test_feature_after,
append=True, target_attr='predicted', inplace=False)
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result)
indicators = evaluate_prediction(predictions, 'gold', 'predicted')
indicators['block_recall'] = block_recall
test_feature_after.remove('_id')
test_feature_after.append('predicted')
predictions = predictions[test_feature_after]
predictions = predictions.reset_index(drop=True)
predictions = predictions.astype(str)
sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
predictions['confidence'] = 0
epl_match = 0 # 可解释预测match
if len(md_list) > 0:
for row in tqdm(predictions.itertuples()):
x = is_explicable(row, md_list, sim_tensor_dict)
if x > 0 and str(getattr(row, 'predicted')) == str(1):
predictions.loc[row[0], 'confidence'] = x
epl_match += 1
df = predictions[predictions['predicted'] == str(1)]
interpretability = epl_match / len(df) # 可解释性
indicators['interpretability'] = interpretability
# note 既然不调block参数, 不妨假设block_recall很高, 不必考虑
# if indicators["block_recall"] < indicators["recall"]:
# f1 = (2.0 * indicators["precision"] * indicators["block_recall"]) / (
# indicators["precision"] + indicators["block_recall"])
# else:
# f1 = indicators["F1"]
performance = interpre_weight * interpretability + (1 - interpre_weight) * indicators["F1"]
indicators['performance'] = performance
print(f'ER Indicators: {indicators}')
predictions.to_csv(er_output_dir + 'predictions.csv', sep=',', index=False, header=True)
print(f'\033[33mTime consumed by matching in seconds: {time.time() - start}\033[0m')
return indicators
def evaluate_prediction(prediction_: pd.DataFrame, labeled_attr: str, predicted_attr: str) -> dict:
new_df = prediction_.reset_index(drop=False, inplace=False)
gold = new_df[labeled_attr]
predicted = new_df[predicted_attr]
gold_negative = gold[gold == 0].index.values
gold_positive = gold[gold == 1].index.values
predicted_negative = predicted[predicted == 0].index.values
predicted_positive = predicted[predicted == 1].index.values
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
num_true_positives = float(len(true_positive_indices))
num_false_positives = float(len(false_positive_indices))
num_false_negatives = float(len(false_negative_indices))
precision_denominator = num_true_positives + num_false_positives
recall_denominator = num_true_positives + num_false_negatives
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
return {"precision": precision, "recall": recall, "F1": F1}
def build_col_pairs_sim_tensor_dict(predictions: pd.DataFrame):
predictions_attrs = predictions.columns.values.tolist()
col_tuple_list = []
for _ in predictions_attrs:
if _.startswith('ltable'):
left_index = predictions_attrs.index(_)
right_index = predictions_attrs.index(_.replace('ltable_', 'rtable_'))
col_tuple_list.append((left_index, right_index))
length = predictions.shape[0]
width = predictions.shape[1]
predictions = predictions.reset_index(drop=True)
sentences = predictions.values.flatten(order='F').tolist()
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True)
split_embedding = torch.split(embedding, length, dim=0)
table_tensor = torch.stack(split_embedding, dim=0, out=None)
# prediction的归一化嵌入张量
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
sim_tensor_dict = {}
for col_tuple in col_tuple_list:
lattr_tensor = norm_table_tensor[col_tuple[0]]
rattr_tensor = norm_table_tensor[col_tuple[1]]
mul_tensor = lattr_tensor * rattr_tensor
sim_tensor = torch.sum(mul_tensor, 1)
sim_tensor = torch.round(sim_tensor, decimals=4)
sim_tensor_dict[predictions_attrs[col_tuple[0]].replace('ltable_', '')] = sim_tensor
return sim_tensor_dict
def is_explicable(row, all_mds: list, st_dict):
attrs = all_mds[0][0].keys() # 从第一条md_tuple中的md字典中读取所有字段
for md_tuple in all_mds:
explicable = True # 假设这条md能解释当前元组
for a in attrs:
if st_dict[a][row[0]].item() < md_tuple[0][a]:
explicable = False # 任意一个字段的相似度达不到阈值这条md就不能解释当前元组
break # 不再与当前md的其他相似度阈值比较跳转到下一条md
if explicable:
return md_tuple[2] # 任意一条md能解释直接返回
return -1.0 # 遍历结束,不能解释
def matching():
return 1
def ml_er(config: Configuration, blocking_result_):
indicators = matching(config, blocking_result_)
output_path = er_output_dir + "eval_result.txt"
with open(output_path, 'w') as _f:
_f.write('Precision:' + str(indicators["precision"]) + '\n')
_f.write('Recall:' + str(indicators["recall"]) + '\n')
_f.write('F1:' + str(indicators["F1"]) + '\n')
_f.write('block_recall:' + str(indicators["block_recall"]) + '\n')
_f.write('interpretability:' + str(indicators['interpretability']) + '\n')
_f.write('performance:' + str(indicators['performance']) + '\n')
if __name__ == '__main__':
blocking_mining()
if os.path.isfile(hpo_output_dir + "incumbent.json"):
with open(hpo_output_dir + "configspace.json", 'r') as f:
dict_configspace = json.load(f)
str_configspace = json.dumps(dict_configspace)
configspace = csj.read(str_configspace)
with open(hpo_output_dir + "incumbent.json", 'r') as f:
dic = json.load(f)
configuration = ConfigSpace.Configuration(configspace, values=dic)
with open(er_output_dir + "blocking_result.pickle", "rb") as file:
blocking_result = pickle.load(file)
ml_er(configuration, blocking_result)

@ -0,0 +1,4 @@
from ml_er.magellan_new import blocking_mining
if __name__ == '__main__':
blocking_mining()

@ -1,27 +0,0 @@
import numpy as np
import pandas as pd
if __name__ == '__main__':
lt = pd.read_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\TMDB-TVDB\tmdb.csv',
encoding='ISO-8859-1', sep=',')
rt = pd.read_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\TMDB-TVDB\tvdb.csv',
encoding='ISO-8859-1', sep=',')
mapping = pd.read_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\TMDB-TVDB\gt.csv',
encoding='ISO-8859-1', sep=',')
# 删除列
# lt.drop(columns=['numberOfSeasons', 'numberOfEpisodes', 'birthDate', 'last_air_date', 'release_year', 'runtime',
# 'genre_list', 'origin_country'], inplace=True)
# rt.drop(columns=['job'], inplace=True)
# 列名调整
# rt = rt.rename(columns={'birthDate': 'birthYear', 'release_year': 'startYear',
# 'last_air_date': 'endYear', 'runtime': 'runtimeMinutes'})
# 列顺序调整
# rt = rt[['id', 'title', 'name', 'episodeNumber', 'seasonNumber', 'birthYear', 'endYear', 'startYear', 'genre_list',
# 'runtimeMinutes']]
# lt.to_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\TMDB-TVDB\tmdb.csv', sep=',', index=False, header=True, quoting=1)
# rt.to_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\TMDB-TVDB\tvdb.csv', sep=',', index=False, header=True, quoting=1)
# mapping.to_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\TMDB-TVDB\gt.csv',
# sep=',', index=False, header=True, quoting=1)
print(1)

@ -1,24 +1,24 @@
from sentence_transformers import SentenceTransformer
ltable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-GoogleScholar\tableA.csv'
rtable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-GoogleScholar\tableB.csv'
mapping_path = r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-GoogleScholar\matches.csv'
mapping_lid = 'idDBLP' # mapping表中左表id名
mapping_rid = 'idScholar' # mapping表中右表id名
ltable_block_attr = 'title'
rtable_block_attr = 'title'
ltable_path = r'E:\Data\Research\Projects\md_bayesian_er_magellan\datasets\Abt-Buy\tableA.csv'
rtable_path = r'E:\Data\Research\Projects\md_bayesian_er_magellan\datasets\Abt-Buy\tableB.csv'
mapping_path = r'E:\Data\Research\Projects\md_bayesian_er_magellan\datasets\Abt-Buy\matches.csv'
mapping_lid = 'idAbt' # mapping表中左表id名
mapping_rid = 'idBuy' # mapping表中右表id名
ltable_block_attr = 'name'
rtable_block_attr = 'name'
ltable_id = 'id' # 左表id字段名称
rtable_id = 'id' # 右表id字段名称
target_attr = 'id' # 进行md挖掘时的目标字段
# lr_attrs_map = {} # 如果两个表中存在对应字段名称不一样的情况,将名称加入列表便于调整一致
model = SentenceTransformer('E:\\Data\\Research\\Models\\all-MiniLM-L6-v2')
interpre_weight = 1 # 可解释性权重
interpre_weight = 0 # 可解释性权重
similarity_threshold = 0.1
support_threshold = 1
confidence_threshold = 0.75
er_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\ml_er\\output\\'
md_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\md_discovery\\output\\'
hpo_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\hpo\\output\\'
er_output_dir = 'E:\\Data\\Research\\Projects\\md_bayesian_er_magellan\\ml_er\\output\\'
md_output_dir = 'E:\\Data\\Research\\Projects\\md_bayesian_er_magellan\\md_discovery\\output\\'
hpo_output_dir = 'E:\\Data\\Research\\Projects\\md_bayesian_er_magellan\\hpo\\output\\'

@ -1,13 +0,0 @@
import pandas as pd
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTableQuestionAnswering
if __name__ == '__main__':
path = r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-ACM\tableA.csv'
table = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1')
tokenizer = AutoTokenizer.from_pretrained(r'E:\Data\Research\Models\tapas-large-finetuned-wtq')
model = AutoModelForTableQuestionAnswering.from_pretrained(r'E:\Data\Research\Models\tapas-large-finetuned-wtq')
encoding = tokenizer(table, return_tensors="pt")
embedding = tokenizer.encode(table, return_tensors="pt")
print(1)

@ -1,159 +0,0 @@
import json
import multiprocessing
import os
import time
import ConfigSpace
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from ConfigSpace.read_and_write import json as csj
from md_discovery import discovery_executor
from settings import er_output_dir, hpo_output_dir
def fuck(i):
i = i * i + 1
def test1():
li = [[[6, 6, 2],
[2, 4, 6],
[2, 4, 7],
[3, 6, 4]],
[[6, 2, 7],
[3, 2, 4],
[5, 3, 5],
[6, 2, 4]],
[[7, 2, 2],
[6, 3, 2],
[6, 4, 3],
[6, 5, 6]]]
tensor = torch.Tensor(li)
norm_tensor = torch.nn.functional.normalize(tensor, dim=2)
print(norm_tensor, '\n')
sim_ten = torch.matmul(norm_tensor, norm_tensor.transpose(1, 2))
print(sim_ten / 2 + 0.5, '\n')
print(sim_ten.size())
def test2():
multiprocessing.set_start_method("spawn")
manager = multiprocessing.Manager()
lock = manager.Lock()
pool = multiprocessing.Pool(16)
with manager:
for _ in tqdm(range(0, 1000)):
result = pool.apply_async(fuck, args=(_,))
print(result)
def test3():
dic = {'description': 0, 'id': 1, 'manufacturer': 0, 'name': 0.9309734582901001, 'price': 0.912541675567627}
ll = list(dic.values())
ten = torch.Tensor(ll)
t = ten.unsqueeze(1)
t = t.unsqueeze(2)
y = t.repeat(1, 742, 742)
print(ten)
print(y)
print(torch.isfinite(ten))
print(torch.count_nonzero(y).item())
def test4():
one_bool_tensor = torch.ones((3, 3, 3), dtype=torch.bool)
print(torch.count_nonzero(one_bool_tensor).item())
def test5():
ten1 = torch.tensor([[1, 2, 3],
[7, 8, 9]])
ten2 = torch.tensor([[4, 5, 6],
[11, 12, 15]])
result = ten1 * ten2
r = torch.sum(result, 1)
print('\n')
print(result)
print(r)
def test6():
table_tensor = torch.tensor([[[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]],
[[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]]])
t = torch.tensor([[1., 2., 3.],
[4., 5., 6.]])
norm1 = torch.nn.functional.normalize(table_tensor, dim=1)
norm2 = torch.nn.functional.normalize(table_tensor, dim=2)
print('\n')
print(norm1)
print(norm2)
print(t.shape)
def test7():
iterations = 1
filename_list = os.listdir(er_output_dir)
if len(filename_list) > 0:
for _ in filename_list:
if _.startswith('eval_result'):
iterations = int(_[12:13]) + 1
print(iterations)
def test8():
with open(hpo_output_dir + "configspace.json", 'r') as load_f:
dict_configspace = json.load(load_f)
str_configspace = json.dumps(dict_configspace)
configspace = csj.read(str_configspace)
def test9():
df = pd.read_json(r'./datasets/t.json', encoding='ISO-8859-1', lines=True)
df.to_csv(r'./datasets/s.csv')
d = pd.read_csv(r'./datasets/s.csv', encoding='ISO-8859-1')
print(1)
def test10():
rtable = pd.read_csv(r'E:\Data\Research\Projects\matching_dependency\ml_er\output\predictions.csv',
encoding='ISO-8859-1')
print(1)
rtable.columns = ["id", "title", "authors", "venue", "year"]
rtable.to_csv(r'E:\Data\Research\Projects\matching_dependency\datasets\DBLP-GoogleScholar\tableB.csv',
sep=',', index=False, header=True, quoting=1)
def test11():
values = {
'block_attr': 'class',
'confidence_thresh': 0.2717823249253852,
'ml_blocker': 'attr_equiv',
'ml_matcher': 'ln',
'similarity_thresh': 0.20681820299103484,
'support_thresh': 129,
}
with open(hpo_output_dir + "incumbent.json", "w") as f:
json.dump(values, f, indent=4)
def test12():
with open(hpo_output_dir + "incumbent.json", 'r') as f:
dic = json.load(f)
for _ in dic.keys():
print(f'Key:{_}\tValue:{dic[_]}\tType:{type(dic[_])}')
def test13():
outcome_dir = r'E:\Data\Research\Outcome'
configs_dir = r'\Magellan+Smac+roberta-large-nli-stsb-mean-tokens'
datasets_list = os.listdir(outcome_dir)
f = []
for _ in datasets_list:
f.append(outcome_dir + rf'\{_}' + configs_dir)
print(f)
Loading…
Cancel
Save