You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/draw/draw_md_cluster_with_data_p...

74 lines
3.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 将数据点和MD一起聚类
import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from draw_md_cluster import DBSCAN
from ml_er.ml_entity_resolver import build_col_pairs_sim_tensor_dict
def plot(md_keys_, md_data_, pre_match_points_, pre_mismatch_points_, labels_, output_path_):
clusterNum = len(set(labels_))
fig = plt.figure()
scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown']
ax = fig.add_subplot(111, projection='3d')
for i in range(-1, clusterNum):
colorStyle = scatterColors[i % len(scatterColors)]
subCluster = md_data_[np.where(labels_ == i)]
ax.scatter(subCluster[:, 0], subCluster[:, 1], subCluster[:, 2], c=colorStyle, s=12)
ax.scatter(pre_match_points_[:, 0], pre_match_points_[:, 1], pre_match_points_[:, 2], c='#66CCFF', s=12, marker='x')
if pre_mismatch_points_.shape[0] > 0:
ax.scatter(pre_mismatch_points_[:, 0], pre_mismatch_points_[:, 1], pre_mismatch_points_[:, 2], c='#006666', s=12, marker='x')
ax.set_xlabel(md_keys_[0], rotation=0) # 设置标签角度
ax.set_ylabel(md_keys_[1], rotation=-45)
ax.set_zlabel(md_keys_[2], rotation=0)
plt.title(output_path_.split('\\')[-1].split('.')[0])
plt.savefig(output_path_, dpi=500)
plt.show()
if __name__ == '__main__':
outcome_path = r'E:\Data\Research\Outcome'
config_dir = r'\Magellan+Smac+roberta-large-nli-stsb-mean-tokens+inter-0.5'
dataset_name_list = [f.name for f in os.scandir(outcome_path) if f.is_dir()]
for dataset_name in dataset_name_list:
absolute_path = outcome_path + rf'\{dataset_name}' + config_dir + r'\mds.txt' # MD路径
predictions = outcome_path + rf'\{dataset_name}' + config_dir + r'\predictions.csv' # prediction路径
pred = pd.read_csv(predictions)
pred = pred.astype(str)
# pred = pred[pred['predicted'] == str(1)]
sim_tensor_dict = build_col_pairs_sim_tensor_dict(pred)
# 选取的三个字段
md_keys = []
with open(absolute_path, 'r') as f:
# 读取每一行的md加入该文件的md列表
md_data = []
for line in f.readlines():
md_metadata = line.strip().split('\t')
md_tuple = eval(md_metadata[1])
md_keys = list(md_tuple[0].keys())[1:4]
md_values = list(md_tuple[0].values())
md_data.append(md_values[1:4])
if len(md_data) == 10000:
break
pre_match_points = []
pre_mismatch_points = []
for _ in pred.itertuples():
data_point_value = []
for key in md_keys:
sim_tensor = sim_tensor_dict[key]
data_point_value.append(round(float(sim_tensor[_[0]]), 4))
if getattr(_, 'predicted') == str(1):
pre_match_points.append(data_point_value)
elif getattr(_, 'predicted') == str(0):
pre_mismatch_points.append(data_point_value)
md_data = np.array(md_data, dtype=np.float32)
pre_match_points = np.array(pre_match_points, dtype=np.float32)
pre_mismatch_points = np.array(pre_mismatch_points, dtype=np.float32)
labels = DBSCAN(md_data, 0.5, 30)
output_path = outcome_path + rf'\{dataset_name}_MD&data.png'
plot(md_keys, md_data, pre_match_points, pre_mismatch_points, labels, output_path)