You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

150 lines
4.9 KiB

import os
import sys
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
import pdb
import pickle
import torch
import json
import numpy as np
import random
from setting import *
from colorama import Fore
from argparse import Namespace
import ConfigSpace
from ConfigSpace import Configuration
from ditto.matcher import set_seed, predict, tune_threshold, load_model
from ConfigSpace.read_and_write import json as csj
from ditto.ditto_light.dataset import DittoDataset
from ditto.ditto_light.summarize import Summarizer
from ditto.ditto_light.knowledge import *
from ditto.ditto_light.ditto import train
def matching(hpo_config):
print(Fore.BLUE + f'Config: {hpo_config}')
with open(md_output_dir + "/mds.pickle", "rb") as file:
md_list = pickle.load(file)
hp = Namespace()
hp.task = directory_path.replace('/root/hjt/DeepMatcher Dataset/', '')
# only a single task for baseline
task = hp.task
# load task configuration
configs = json.load(open('../ditto/configs.json'))
configs = {conf['name']: conf for conf in configs}
config = configs[task]
config['trainset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['trainset']
config['validset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['validset']
config['testset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['testset']
trainset = config['trainset']
validset = config['validset']
testset = config['testset']
hp.run_id = 0
hp.batch_size = hpo_config['batch_size']
hp.max_len = hpo_config['max_len']
hp.lr = 3e-5
hp.n_epochs = 20
# hp.finetuning
hp.save_model = True
hp.input_path = config['testset']
hp.output_path = '/root/autodl-tmp/output/matched_small.jsonl'
hp.logdir = '/root/autodl-tmp/checkpoints/'
hp.checkpoint_path = '/root/autodl-tmp/checkpoints/'
hp.lm = hpo_config['language_model']
hp.fp16 = hpo_config['half_precision_float']
hp.da = hpo_config['data_augmentation']
hp.alpha_aug = 0.8
hp.dk = None
hp.summarize = hpo_config['summarize']
hp.size = None
hp.use_gpu = True
seed = hp.run_id
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# create the tag of the run
run_tag = '%s_lm=%s_da=%s_dk=%s_su=%s_size=%s_id=%d' % (task, hp.lm, hp.da,
hp.dk, hp.summarize, str(hp.size), hp.run_id)
run_tag = run_tag.replace('/', '_')
# summarize the sequences up to the max sequence length
if hp.summarize:
summarizer = Summarizer(config, lm=hp.lm)
trainset = summarizer.transform_file(trainset, max_len=hp.max_len)
validset = summarizer.transform_file(validset, max_len=hp.max_len)
testset = summarizer.transform_file(testset, max_len=hp.max_len)
# load train/dev/test sets
train_dataset = DittoDataset(trainset,
lm=hp.lm,
max_len=hp.max_len,
size=hp.size,
da=hp.da)
valid_dataset = DittoDataset(validset, lm=hp.lm)
test_dataset = DittoDataset(testset, lm=hp.lm)
# train and evaluate the model
train(train_dataset,
valid_dataset,
test_dataset,
run_tag, hp)
set_seed(123)
config, model = load_model(hp.task, hp.checkpoint_path,
hp.lm, hp.use_gpu, hp.fp16)
summarizer = dk_injector = None
pdb.set_trace()
if hp.summarize:
summarizer = Summarizer(config, hp.lm)
# tune threshold
threshold = tune_threshold(config, model, hp)
# run prediction
predict(hp.input_path, hp.output_path, config, model,
summarizer=summarizer,
max_len=hp.max_len,
lm=hp.lm,
dk_injector=dk_injector,
threshold=threshold)
# todo indicators
# write results
# interpretability
indicators = {}
return indicators
# todo ml_er function
def ml_er(config: Configuration):
indicators = matching(config)
output_path = er_output_dir + "/eval_result.txt"
with open(output_path, 'w') as _f:
_f.write('F1:' + str(indicators["F1"]) + '\n')
_f.write('interpretability:' + str(indicators['interpretability']) + '\n')
_f.write('performance:' + str(indicators['performance']) + '\n')
if __name__ == '__main__':
if os.path.isfile(hpo_output_dir + "/incumbent.json"):
with open(hpo_output_dir + "/configspace.json", 'r') as f:
dict_configspace = json.load(f)
str_configspace = json.dumps(dict_configspace)
configspace = csj.read(str_configspace)
with open(hpo_output_dir + "/incumbent.json", 'r') as f:
dic = json.load(f)
configuration = ConfigSpace.Configuration(configspace, values=dic)
ml_er(configuration)