You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

252 lines
9.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import os
import sys
import time
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
sys.path.append('/root/hjt/md_bayesian_er_ditto/')
import pdb
import pickle
import torch
import json
import numpy as np
import pandas as pd
import random
from tqdm import tqdm
from setting import *
from colorama import Fore
from argparse import Namespace
import ConfigSpace
from ConfigSpace import Configuration
from ditto.matcher import set_seed, predict, tune_threshold, load_model
from ConfigSpace.read_and_write import json as csj
from ditto.ditto_light.dataset import DittoDataset
from ditto.ditto_light.summarize import Summarizer
from ditto.ditto_light.knowledge import *
from ditto.ditto_light.ditto import train
def matching(hpo_config):
print(Fore.BLUE + f'Config: {hpo_config}')
with open(md_output_dir + "/mds.pickle", "rb") as file:
md_list = pickle.load(file)
hp = Namespace()
hp.task = directory_path.replace('/root/hjt/DeepMatcher Dataset/', '')
# only a single task for baseline
task = hp.task
# load task configuration
configs = json.load(open('../ditto/configs.json'))
configs = {conf['name']: conf for conf in configs}
config = configs[task]
config['trainset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['trainset']
config['validset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['validset']
config['testset'] = '/root/hjt/md_bayesian_er_ditto/ditto/' + config['testset']
trainset = config['trainset']
validset = config['validset']
testset = config['testset']
hp.run_id = 0
hp.batch_size = hpo_config['batch_size']
hp.max_len = hpo_config['max_len']
hp.lr = 3e-5
# hp.n_epochs = 20
hp.n_epochs = 2
# hp.finetuning
hp.save_model = True
hp.input_path = config['testset']
hp.output_path = '/root/autodl-tmp/output/predictions.jsonl'
hp.logdir = '/root/autodl-tmp/checkpoints/'
hp.checkpoint_path = '/root/autodl-tmp/checkpoints/'
hp.lm = hpo_config['language_model']
hp.fp16 = hpo_config['half_precision_float']
hp.da = hpo_config['data_augmentation']
hp.alpha_aug = 0.8
hp.dk = None
hp.summarize = hpo_config['summarize']
hp.size = None
hp.use_gpu = True
seed = hp.run_id
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# create the tag of the run
run_tag = '%s_lm=%s_da=%s_dk=%s_su=%s_size=%s_id=%d' % (task, hp.lm, hp.da,
hp.dk, hp.summarize, str(hp.size), hp.run_id)
run_tag = run_tag.replace('/', '_')
# summarize the sequences up to the max sequence length
if hp.summarize:
summarizer = Summarizer(config, lm=hp.lm)
trainset = summarizer.transform_file(trainset, max_len=hp.max_len)
validset = summarizer.transform_file(validset, max_len=hp.max_len)
testset = summarizer.transform_file(testset, max_len=hp.max_len)
# load train/dev/test sets
train_dataset = DittoDataset(trainset,
lm=hp.lm,
max_len=hp.max_len,
size=hp.size,
da=hp.da)
valid_dataset = DittoDataset(validset, lm=hp.lm)
test_dataset = DittoDataset(testset, lm=hp.lm)
# train and evaluate the model
train(train_dataset,
valid_dataset,
test_dataset,
run_tag, hp)
set_seed(123)
config, model = load_model(hp.task, hp.checkpoint_path,
hp.lm, hp.use_gpu, hp.fp16)
summarizer = dk_injector = None
if hp.summarize:
summarizer = Summarizer(config, hp.lm)
# tune threshold
threshold = tune_threshold(config, model, hp)
# run prediction
predict(hp.input_path, hp.output_path, config, model,
summarizer=summarizer,
max_len=hp.max_len,
lm=hp.lm,
dk_injector=dk_injector,
threshold=threshold)
predictions_raw = pd.read_json(hp.output_path, encoding='ISO-8859-1', lines=True)
predictions = pd.read_csv(directory_path + '/test_whole.csv', encoding='ISO-8859-1')
predictions['predicted'] = predictions_raw['match']
indicators = evaluate_prediction(predictions, 'label', 'predicted')
predictions.drop(columns='_id', inplace=True)
predictions = predictions.reset_index(drop=True)
predictions = predictions.astype(str)
sim_tensor_dict = build_col_pairs_sim_tensor_dict(predictions)
predictions['confidence'] = 0
predictions['md'] = ''
epl_match = 0 # 可解释预测match
if len(md_list) > 0:
for row in tqdm(predictions.itertuples()):
if str(getattr(row, 'predicted')) == str(1):
conf, md_dict = is_explicable(row, md_list, sim_tensor_dict)
if conf > 0:
predictions.loc[row[0], 'confidence'] = conf
predictions.loc[row[0], 'md'] = str(md_dict)
epl_match += 1
df = predictions[predictions['predicted'] == str(1)]
interpretability = epl_match / len(df) # 可解释性
indicators['interpretability'] = interpretability
performance = interpre_weight * interpretability + (1 - interpre_weight) * indicators["F1"]
indicators['performance'] = performance
print(Fore.BLUE + f'ER Indicators: {indicators}')
predictions.to_csv(er_output_dir + '/predictions.csv', sep=',', index=False, header=True)
print(Fore.CYAN + f'Finish Time: {time.time()}')
return indicators
def evaluate_prediction(prediction_: pd.DataFrame, labeled_attr: str, predicted_attr: str) -> dict:
new_df = prediction_.reset_index(drop=False, inplace=False)
gold = new_df[labeled_attr]
predicted = new_df[predicted_attr]
gold_negative = gold[gold == 0].index.values
gold_positive = gold[gold == 1].index.values
predicted_negative = predicted[predicted == 0].index.values
predicted_positive = predicted[predicted == 1].index.values
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
num_true_positives = float(len(true_positive_indices))
num_false_positives = float(len(false_positive_indices))
num_false_negatives = float(len(false_negative_indices))
precision_denominator = num_true_positives + num_false_positives
recall_denominator = num_true_positives + num_false_negatives
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
return {"precision": precision, "recall": recall, "F1": F1}
def build_col_pairs_sim_tensor_dict(predictions: pd.DataFrame):
predictions_attrs = predictions.columns.values.tolist()
col_tuple_list = []
for _ in predictions_attrs:
if _.startswith('ltable'):
left_index = predictions_attrs.index(_)
right_index = predictions_attrs.index(_.replace('ltable_', 'rtable_'))
col_tuple_list.append((left_index, right_index))
length = predictions.shape[0]
# width = predictions.shape[1]
predictions = predictions.reset_index(drop=True)
sentences = predictions.values.flatten(order='F').tolist()
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True)
split_embedding = torch.split(embedding, length, dim=0)
table_tensor = torch.stack(split_embedding, dim=0, out=None)
# prediction的归一化嵌入张量
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
sim_tensor_dict = {}
for col_tuple in col_tuple_list:
lattr_tensor = norm_table_tensor[col_tuple[0]]
rattr_tensor = norm_table_tensor[col_tuple[1]]
mul_tensor = lattr_tensor * rattr_tensor
sim_tensor = torch.sum(mul_tensor, 1)
sim_tensor = torch.round(sim_tensor * 100) / 100
sim_tensor_dict[predictions_attrs[col_tuple[0]].replace('ltable_', '')] = sim_tensor
return sim_tensor_dict
def is_explicable(row, all_mds: list, st_dict):
attrs = all_mds[0][0].keys() # 从第一条md_tuple中的md字典中读取所有字段
for md_tuple in all_mds:
explicable = True # 假设这条md能解释当前元组
for a in attrs:
if st_dict[a][row[0]].item() < md_tuple[0][a]:
explicable = False # 任意一个字段的相似度达不到阈值这条md就不能解释当前元组
break # 不再与当前md的其他相似度阈值比较跳转到下一条md
if explicable:
return md_tuple[2], md_tuple[0] # 任意一条md能解释直接返回
return -1.0, {} # 遍历结束,不能解释
def ml_er(config: Configuration):
indicators = matching(config)
output_path = er_output_dir + "/eval_result.txt"
with open(output_path, 'w') as _f:
_f.write('precision:' + str(indicators['precision']) + '\n')
_f.write('recall:' + str(indicators['recall']) + '\n')
_f.write('F1:' + str(indicators["F1"]) + '\n')
_f.write('interpretability:' + str(indicators['interpretability']) + '\n')
_f.write('performance:' + str(indicators['performance']) + '\n')
if __name__ == '__main__':
if os.path.isfile(hpo_output_dir + "/incumbent.json"):
with open(hpo_output_dir + "/configspace.json", 'r') as f:
dict_configspace = json.load(f)
str_configspace = json.dumps(dict_configspace)
configspace = csj.read(str_configspace)
with open(hpo_output_dir + "/incumbent.json", 'r') as f:
dic = json.load(f)
configuration = ConfigSpace.Configuration(configspace, values=dic)
ml_er(configuration)