You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

75 lines
2.4 KiB

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class OhemCELoss(nn.Module):
def __init__(self, thresh, n_min, ignore_lb=255, *args, **kwargs):
super(OhemCELoss, self).__init__()
self.thresh = -torch.log(torch.tensor(thresh, dtype=torch.float)).cuda()
self.n_min = n_min
self.ignore_lb = ignore_lb
self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none')
def forward(self, logits, labels):
N, C, H, W = logits.size()
loss = self.criteria(logits, labels).view(-1)
loss, _ = torch.sort(loss, descending=True)
if loss[self.n_min] > self.thresh:
loss = loss[loss>self.thresh]
else:
loss = loss[:self.n_min]
return torch.mean(loss)
class SoftmaxFocalLoss(nn.Module):
def __init__(self, gamma, ignore_lb=255, *args, **kwargs):
super(SoftmaxFocalLoss, self).__init__()
self.gamma = gamma
self.nll = nn.NLLLoss(ignore_index=ignore_lb)
def forward(self, logits, labels):
scores = F.softmax(logits, dim=1)
factor = torch.pow(1.-scores, self.gamma)
log_score = F.log_softmax(logits, dim=1)
log_score = factor * log_score
loss = self.nll(log_score, labels)
return loss
class ParsingRelationLoss(nn.Module):
def __init__(self):
super(ParsingRelationLoss, self).__init__()
def forward(self,logits):
n,c,h,w = logits.shape
loss_all = []
for i in range(0,h-1):
loss_all.append(logits[:,:,i,:] - logits[:,:,i+1,:])
#loss0 : n,c,w
loss = torch.cat(loss_all)
return torch.nn.functional.smooth_l1_loss(loss,torch.zeros_like(loss))
class ParsingRelationDis(nn.Module):
def __init__(self):
super(ParsingRelationDis, self).__init__()
self.l1 = torch.nn.L1Loss()
# self.l1 = torch.nn.MSELoss()
def forward(self, x):
n,dim,num_rows,num_cols = x.shape
x = torch.nn.functional.softmax(x[:,:dim-1,:,:],dim=1)
embedding = torch.Tensor(np.arange(dim-1)).float().to(x.device).view(1,-1,1,1)
pos = torch.sum(x*embedding,dim = 1)
diff_list1 = []
for i in range(0,num_rows // 2):
diff_list1.append(pos[:,i,:] - pos[:,i+1,:])
loss = 0
for i in range(len(diff_list1)-1):
loss += self.l1(diff_list1[i],diff_list1[i+1])
loss /= len(diff_list1) - 1
return loss