Compare commits
30 Commits
Author | SHA1 | Date |
---|---|---|
|
19fa153e5a | 7 months ago |
|
7c100f95fa | 7 months ago |
|
7a93f76da0 | 7 months ago |
|
5a9d5da45d | 7 months ago |
|
7f917cf9e6 | 7 months ago |
|
7c694554d4 | 7 months ago |
|
a1f852b393 | 7 months ago |
|
6059412e5a | 7 months ago |
|
e0d39ed553 | 7 months ago |
|
910206eb1b | 7 months ago |
|
f12366ca01 | 7 months ago |
|
b19bd9bef5 | 7 months ago |
|
7b70265a0d | 7 months ago |
|
ab8bd7dfae | 7 months ago |
|
22043cdac7 | 7 months ago |
|
0ec602fbc1 | 7 months ago |
|
b789574e3e | 7 months ago |
|
3d0453cf0b | 7 months ago |
|
aa9c8889bd | 7 months ago |
|
19262e6ef2 | 7 months ago |
|
7d1020b93a | 7 months ago |
|
cb4ffe074c | 7 months ago |
|
f5a4c8b16b | 7 months ago |
|
811bec3b62 | 7 months ago |
|
d032cbab43 | 7 months ago |
|
97a3f6598d | 7 months ago |
|
2237326033 | 7 months ago |
|
2a3a14b6d9 | 7 months ago |
|
95f484af5c | 7 months ago |
|
371c0c70c3 | 7 months ago |
@ -0,0 +1,3 @@
|
|||||||
|
# 默认忽略的文件
|
||||||
|
/shelf/
|
||||||
|
/workspace.xml
|
@ -0,0 +1,12 @@
|
|||||||
|
<component name="InspectionProjectProfileManager">
|
||||||
|
<profile version="1.0">
|
||||||
|
<option name="myName" value="Project Default" />
|
||||||
|
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="INFORMATION" enabled_by_default="true">
|
||||||
|
<option name="ignoredPackages">
|
||||||
|
<value>
|
||||||
|
<list size="0" />
|
||||||
|
</value>
|
||||||
|
</option>
|
||||||
|
</inspection_tool>
|
||||||
|
</profile>
|
||||||
|
</component>
|
@ -0,0 +1,6 @@
|
|||||||
|
<component name="InspectionProjectProfileManager">
|
||||||
|
<settings>
|
||||||
|
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||||
|
<version value="1.0" />
|
||||||
|
</settings>
|
||||||
|
</component>
|
@ -0,0 +1,4 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (mycode)" project-jdk-type="Python SDK" />
|
||||||
|
</project>
|
@ -0,0 +1,8 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="ProjectModuleManager">
|
||||||
|
<modules>
|
||||||
|
<module fileurl="file://$PROJECT_DIR$/.idea/mycode.iml" filepath="$PROJECT_DIR$/.idea/mycode.iml" />
|
||||||
|
</modules>
|
||||||
|
</component>
|
||||||
|
</project>
|
@ -0,0 +1,8 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<module type="PYTHON_MODULE" version="4">
|
||||||
|
<component name="NewModuleRootManager">
|
||||||
|
<content url="file://$MODULE_DIR$" />
|
||||||
|
<orderEntry type="inheritedJdk" />
|
||||||
|
<orderEntry type="sourceFolder" forTests="false" />
|
||||||
|
</component>
|
||||||
|
</module>
|
@ -0,0 +1,6 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="VcsDirectoryMappings">
|
||||||
|
<mapping directory="" vcs="Git" />
|
||||||
|
</component>
|
||||||
|
</project>
|
@ -0,0 +1,2 @@
|
|||||||
|
a=[0]*int(2e4)
|
||||||
|
print(len(a))
|
@ -0,0 +1,54 @@
|
|||||||
|
from functools import cmp_to_key
|
||||||
|
c=[[],[]]
|
||||||
|
string=[[],[]]
|
||||||
|
for i in range(2):
|
||||||
|
a = eval(input())
|
||||||
|
while a>0:
|
||||||
|
s=input().split()
|
||||||
|
s[1],s[2]=eval(s[1]),eval(s[2])
|
||||||
|
c[i].append(s)
|
||||||
|
string[i].append(s[0])
|
||||||
|
a-=1
|
||||||
|
def cmp(a,b):
|
||||||
|
if a[1]>b[1]:
|
||||||
|
return -1
|
||||||
|
elif a[1]==b[1]:
|
||||||
|
if a[2]<b[2] :
|
||||||
|
return -1
|
||||||
|
else:
|
||||||
|
return 1
|
||||||
|
else :
|
||||||
|
return 1
|
||||||
|
c[0]=sorted(c[0],key=cmp_to_key(cmp))
|
||||||
|
# print(c[0])
|
||||||
|
c[1]=sorted(c[1],key=cmp_to_key(cmp))
|
||||||
|
# print(c[1])
|
||||||
|
# m='123'
|
||||||
|
# n='123'
|
||||||
|
# print(m==n)
|
||||||
|
st="lzr010506"
|
||||||
|
s=set(string[0])&set(string[1])
|
||||||
|
# for i in c[0]:
|
||||||
|
# for j in c[1]:
|
||||||
|
# if i[0] == j[0] :
|
||||||
|
# s.append(j[0])
|
||||||
|
# print(s)
|
||||||
|
ans1=0
|
||||||
|
ans2=0
|
||||||
|
i=0
|
||||||
|
while c[0][i][0] != st:
|
||||||
|
# print(c[0][i][0])
|
||||||
|
if c[0][i][0] in s:
|
||||||
|
ans1+=1
|
||||||
|
i+=1
|
||||||
|
ans1= i+1-ans1
|
||||||
|
i=0
|
||||||
|
while c[1][i][0]!=st:
|
||||||
|
# print(c[1][i][0])
|
||||||
|
if c[1][i][0] in s:
|
||||||
|
ans2+=1
|
||||||
|
i+=1
|
||||||
|
ans2=i+1-ans2
|
||||||
|
# print(ans1,ans2)
|
||||||
|
print(min(ans1,ans2))
|
||||||
|
# print(c[0],'\n',c[1])
|
@ -0,0 +1,18 @@
|
|||||||
|
import heapq
|
||||||
|
import ctypes
|
||||||
|
a=int(input())
|
||||||
|
b=input().split()
|
||||||
|
for i in range(len(b)):
|
||||||
|
b[i]=int(b[i])
|
||||||
|
heapq.heapify(b)
|
||||||
|
# print(b)
|
||||||
|
sum=0
|
||||||
|
while len(b) != 1:
|
||||||
|
c,d=heapq.nsmallest(2,b)
|
||||||
|
# heapq.heappop(b)
|
||||||
|
# heapq.heappop(b)
|
||||||
|
b.remove(c)
|
||||||
|
b.remove(d)
|
||||||
|
sum+=c+d
|
||||||
|
heapq.heappush(b,c+d)
|
||||||
|
print(sum)
|
@ -0,0 +1,28 @@
|
|||||||
|
import functools
|
||||||
|
a,b =map(int, input().split(' '))
|
||||||
|
nums=[]
|
||||||
|
for i in range(b):
|
||||||
|
m,n=map(int,input().split(' '))
|
||||||
|
if m>n:continue;
|
||||||
|
nums.append([m,n])
|
||||||
|
def cmp(a,b):#升序
|
||||||
|
if(a[0]>b[0]):
|
||||||
|
return 1
|
||||||
|
else :
|
||||||
|
return -1#不变
|
||||||
|
nums=sorted(nums,key=functools.cmp_to_key(cmp))
|
||||||
|
# for i in nums:
|
||||||
|
# print(i)
|
||||||
|
sum = 0
|
||||||
|
start,end=nums[0][0],nums[0][1]
|
||||||
|
count=1
|
||||||
|
while count<len(nums):
|
||||||
|
if nums[count][0]>=start and nums[count][0]<=end:
|
||||||
|
if end<=nums[count][1]:
|
||||||
|
end=nums[count][1]
|
||||||
|
else :
|
||||||
|
sum+=end-start+1
|
||||||
|
start=nums[count][0];end=nums[count][1]
|
||||||
|
count+=1
|
||||||
|
sum+=end-start+1
|
||||||
|
print(a-sum+1)
|
@ -0,0 +1,7 @@
|
|||||||
|
a,b =map(int, input().split(' '))
|
||||||
|
nums=[]
|
||||||
|
for i in range(b):
|
||||||
|
m,n=map(int,input().split(' '))
|
||||||
|
nums.extend(range(m,n+1))
|
||||||
|
nums=set(nums)
|
||||||
|
print(a+1-len(nums))
|
@ -0,0 +1,64 @@
|
|||||||
|
%AHP步骤
|
||||||
|
|
||||||
|
clc,clear,close all;
|
||||||
|
A=[1,2,3,5
|
||||||
|
1/2,1,1/2,2
|
||||||
|
1/3,2,1,2
|
||||||
|
1/5,1/2,1/2,1];
|
||||||
|
[row,col]=size(A);
|
||||||
|
|
||||||
|
%判断矩阵一致性检验
|
||||||
|
n=col;
|
||||||
|
maxlam=max(eig(A));
|
||||||
|
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45];
|
||||||
|
CI=(maxlam-n)/(n-1);
|
||||||
|
CR=CI/RI(n);
|
||||||
|
|
||||||
|
%判断矩阵确定权重
|
||||||
|
for i=1:col
|
||||||
|
sumcol=sum(A(:,i));
|
||||||
|
for j=1:row
|
||||||
|
A(j,i)=A(j,i)/sumcol;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
weig=zeros(row,1);
|
||||||
|
for i=1:row
|
||||||
|
sumrow=sum(A(i,:));
|
||||||
|
weig(i)=sumrow/n;
|
||||||
|
end
|
||||||
|
|
||||||
|
%各个指标归一化 按列单位化
|
||||||
|
data= [1686.4 3183 12000 397
|
||||||
|
903.6 1916.4 3439.6 43
|
||||||
|
837.6 817.6 4748 1159
|
||||||
|
824.9 1296.4 12000 442
|
||||||
|
2110.2 1465.7 6199.5 228];
|
||||||
|
[rowd,cold]=size(data);
|
||||||
|
for i=1:cold
|
||||||
|
sumcold=sum(data(:,i));
|
||||||
|
for j=1:rowd
|
||||||
|
data(j,i)=data(j,i)/sumcold;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
%按权重计算分数
|
||||||
|
|
||||||
|
score=data*weig;
|
||||||
|
|
||||||
|
|
||||||
|
projectNames={'老番茄','何同学','木鱼水心','凉风','罗翔'};
|
||||||
|
figure;
|
||||||
|
bar(score);%条形图
|
||||||
|
|
||||||
|
set(gca, 'XTickLabel', projectNames); %每个条形图标签
|
||||||
|
xlabel('博主');
|
||||||
|
ylabel('加权总分');
|
||||||
|
title('得分');
|
||||||
|
|
||||||
|
grid on; % 网格线
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,40 +1,40 @@
|
|||||||
clc; clear; close all; format long g;
|
clc; clear; close all; format long g;
|
||||||
prob=optimproblem;
|
prob=optimproblem;
|
||||||
x=optimvar('x',9,1,'LowerBound',0,'Type','integer');
|
x=optimvar('x',9,1,'LowerBound',0,'Type','integer');
|
||||||
p=[0.25,0.35,0.50];
|
p=[0.25,0.35,0.50];
|
||||||
r=[1.25,2.00,2.80];
|
r=[1.25,2.00,2.80];
|
||||||
ot=[5,10,0;7,9,12;6,8,0;4,0,11;7,0,0];
|
ot=[5,10,0;7,9,12;6,8,0;4,0,11;7,0,0];
|
||||||
total=1000:200:3000;
|
total=1000:200:3000;
|
||||||
odp=[300/6000,321/10000,250/4000,783/7000,200/4000];
|
odp=[300/6000,321/10000,250/4000,783/7000,200/4000];
|
||||||
|
|
||||||
X=[];
|
X=[];
|
||||||
Q=[];
|
Q=[];
|
||||||
|
|
||||||
for i=1:length(total)
|
for i=1:length(total)
|
||||||
% prob.Objective=(ot(1,1)*ones(1,3)*x(1:3)+ot(1,2)*x(7))*odp(1)+(ot(2,1)*ones(1,3)*x(4:6)+ot(2,2)*x(8)+ot(2,3)*x(9))*odp(2)+(ot(3,1)*(x(1)+x(4))+ot(3,2)*(x(7)+x(8)))*odp(3)+(ot(4,1)*(x(2)+x(5))+ot(4,3)*x(9))*odp(4)+(ot(5,1)*(x(3)+x(6)))*odp(5)-(r(1)-p(1))*ones(1,6)*x(1:6)-(r(2)-p(2))*ones(1,2)*x(7:8)-(r(3)-p(3))*x(9);
|
% prob.Objective=(ot(1,1)*ones(1,3)*x(1:3)+ot(1,2)*x(7))*odp(1)+(ot(2,1)*ones(1,3)*x(4:6)+ot(2,2)*x(8)+ot(2,3)*x(9))*odp(2)+(ot(3,1)*(x(1)+x(4))+ot(3,2)*(x(7)+x(8)))*odp(3)+(ot(4,1)*(x(2)+x(5))+ot(4,3)*x(9))*odp(4)+(ot(5,1)*(x(3)+x(6)))*odp(5)-(r(1)-p(1))*ones(1,6)*x(1:6)-(r(2)-p(2))*ones(1,2)*x(7:8)-(r(3)-p(3))*x(9);
|
||||||
dp1=(ot(1,1)*ones(1,3)*x(1:3)+ot(1,2)*x(7))*odp(1);
|
dp1=(ot(1,1)*ones(1,3)*x(1:3)+ot(1,2)*x(7))*odp(1);
|
||||||
dp2=(ot(2,1)*ones(1,3)*x(4:6)+ot(2,2)*x(8)+ot(2,3)*x(9))*odp(2);
|
dp2=(ot(2,1)*ones(1,3)*x(4:6)+ot(2,2)*x(8)+ot(2,3)*x(9))*odp(2);
|
||||||
dp3=(ot(3,1)*(x(1)+x(4))+ot(3,2)*(x(7)+x(8)))*odp(3);
|
dp3=(ot(3,1)*(x(1)+x(4))+ot(3,2)*(x(7)+x(8)))*odp(3);
|
||||||
dp4=(ot(4,1)*(x(2)+x(5))+ot(4,3)*x(9))*odp(4);
|
dp4=(ot(4,1)*(x(2)+x(5))+ot(4,3)*x(9))*odp(4);
|
||||||
dp5=(ot(5,1)*(x(3)+x(6)))*odp(5);
|
dp5=(ot(5,1)*(x(3)+x(6)))*odp(5);
|
||||||
dp=dp1+dp2+dp3+dp4+dp5;
|
dp=dp1+dp2+dp3+dp4+dp5;
|
||||||
prob.Objective=dp-(r(1)-p(1))*ones(1,6)*x(1:6)-(r(2)-p(2))*ones(1,2)*x(7:8)-(r(3)-p(3))*x(9);
|
prob.Objective=dp-(r(1)-p(1))*ones(1,6)*x(1:6)-(r(2)-p(2))*ones(1,2)*x(7:8)-(r(3)-p(3))*x(9);
|
||||||
prob.Constraints.con1=p(1)*ones(1,6)*x(1:6)+p(2)*ones(1,2)*x(7:8)+p(3)*x(9)+dp<=total(i);%总费用
|
prob.Constraints.con1=p(1)*ones(1,6)*x(1:6)+p(2)*ones(1,2)*x(7:8)+p(3)*x(9)+dp<=total(i);%总费用
|
||||||
prob.Constraints.con2=ot(1,1)*ones(1,3)*x(1:3)+ot(1,2)*x(7)<=6000;%A1
|
prob.Constraints.con2=ot(1,1)*ones(1,3)*x(1:3)+ot(1,2)*x(7)<=6000;%A1
|
||||||
prob.Constraints.con3=ot(2,1)*ones(1,3)*x(4:6)+ot(2,2)*x(8)+ot(2,3)*x(9)<=10000;
|
prob.Constraints.con3=ot(2,1)*ones(1,3)*x(4:6)+ot(2,2)*x(8)+ot(2,3)*x(9)<=10000;
|
||||||
prob.Constraints.con4=ot(3,1)*(x(1)+x(4))+ot(3,2)*(x(7)+x(8))<=4000;
|
prob.Constraints.con4=ot(3,1)*(x(1)+x(4))+ot(3,2)*(x(7)+x(8))<=4000;
|
||||||
prob.Constraints.con5=ot(4,1)*(x(2)+x(5))+ot(4,3)*x(9)<=7000;
|
prob.Constraints.con5=ot(4,1)*(x(2)+x(5))+ot(4,3)*x(9)<=7000;
|
||||||
prob.Constraints.con6=ot(5,1)*(x(3)+x(6))<=4000;
|
prob.Constraints.con6=ot(5,1)*(x(3)+x(6))<=4000;
|
||||||
[sol,fval,flag,out]=solve(prob);
|
[sol,fval,flag,out]=solve(prob);
|
||||||
xx=sol.x;
|
xx=sol.x;
|
||||||
|
|
||||||
X=[X,xx];
|
X=[X,xx];
|
||||||
Q=[Q,-fval];
|
Q=[Q,-fval];
|
||||||
|
|
||||||
end
|
end
|
||||||
plot(total,Q,'*-');
|
plot(total,Q,'*-');
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,61 +1,61 @@
|
|||||||
|
|
||||||
%27页例题
|
%27页例题
|
||||||
clc; clear; close all;
|
clc; clear; close all;
|
||||||
n = 10000; % 使用较小的 n 值以便更容易可视化
|
n = 10000; % 使用较小的 n 值以便更容易可视化
|
||||||
x = unifrnd(0, 12, [1, n]);
|
x = unifrnd(0, 12, [1, n]);
|
||||||
y = unifrnd(0, 9, [1, n]);
|
y = unifrnd(0, 9, [1, n]);
|
||||||
ans=sum(y < x.^2 & x <= 3)+sum(y < 12 - x & x >= 3);
|
ans=sum(y < x.^2 & x <= 3)+sum(y < 12 - x & x >= 3);
|
||||||
ans=ans/n;
|
ans=ans/n;
|
||||||
% 找出满足条件的点
|
% 找出满足条件的点
|
||||||
condition1 = y < x.^2 & x <= 3;
|
condition1 = y < x.^2 & x <= 3;
|
||||||
condition2 = y < 12 - x & x >= 3;
|
condition2 = y < 12 - x & x >= 3;
|
||||||
condition_met = condition1 | condition2; % 满足任一条件的点
|
condition_met = condition1 | condition2; % 满足任一条件的点
|
||||||
condition_not_met = ~condition_met; % 不满足任何条件的点
|
condition_not_met = ~condition_met; % 不满足任何条件的点
|
||||||
|
|
||||||
% 创建图形窗口
|
% 创建图形窗口
|
||||||
figure;
|
figure;
|
||||||
hold on;%在同一张图上绘图
|
hold on;%在同一张图上绘图
|
||||||
|
|
||||||
% 绘制不满足任何条件的点
|
% 绘制不满足任何条件的点
|
||||||
scatter(x(condition_not_met), y(condition_not_met), 'k.'); % k----黑色 .----绘制样式
|
scatter(x(condition_not_met), y(condition_not_met), 'k.'); % k----黑色 .----绘制样式
|
||||||
%scatter绘制散点图
|
%scatter绘制散点图
|
||||||
%x(condition_not_met) 会返回一个新的向量,其中只包含 x 中对应 condition_not_met 为 true 的元素。
|
%x(condition_not_met) 会返回一个新的向量,其中只包含 x 中对应 condition_not_met 为 true 的元素。
|
||||||
|
|
||||||
% 绘制满足第一个条件的点
|
% 绘制满足第一个条件的点
|
||||||
scatter(x(condition1), y(condition1), 'r.'); % 红色
|
scatter(x(condition1), y(condition1), 'r.'); % 红色
|
||||||
|
|
||||||
% 绘制满足第二个条件的点
|
% 绘制满足第二个条件的点
|
||||||
scatter(x(condition2), y(condition2), 'b.'); % 蓝色
|
scatter(x(condition2), y(condition2), 'b.'); % 蓝色
|
||||||
|
|
||||||
% 添加图例和标签
|
% 添加图例和标签
|
||||||
legend('不满足任何条件的点', '满足 y < x^2 且 x <= 3 的点', '满足 y < 12 - x 且 x >= 3 的点');
|
legend('不满足任何条件的点', '满足 y < x^2 且 x <= 3 的点', '满足 y < 12 - x 且 x >= 3 的点');
|
||||||
xlabel('x');
|
xlabel('x');
|
||||||
ylabel('y');
|
ylabel('y');
|
||||||
title('随机生成的点和满足条件的点');
|
title('随机生成的点和满足条件的点');
|
||||||
hold off;
|
hold off;
|
||||||
|
|
||||||
|
|
||||||
%蒙特卡洛法求圆周率qw
|
%蒙特卡洛法求圆周率qw
|
||||||
clc;clear;close all;
|
clc;clear;close all;
|
||||||
|
|
||||||
n=10^5;
|
n=10^5;
|
||||||
x=unifrnd(-1,1,[1,n]);
|
x=unifrnd(-1,1,[1,n]);
|
||||||
y=unifrnd(-1,1,[1,n]);
|
y=unifrnd(-1,1,[1,n]);
|
||||||
con1=x.^2+y.^2<=1;
|
con1=x.^2+y.^2<=1;
|
||||||
con2=~con1;
|
con2=~con1;
|
||||||
ans=sum(x.^2+y.^2<=1);
|
ans=sum(x.^2+y.^2<=1);
|
||||||
ans=ans/n*4;
|
ans=ans/n*4;
|
||||||
|
|
||||||
figure ;
|
figure ;
|
||||||
hold on;
|
hold on;
|
||||||
|
|
||||||
scatter(x(con1),y(con1),'r.');
|
scatter(x(con1),y(con1),'r.');
|
||||||
scatter(x(con2),y(con2),'k.');
|
scatter(x(con2),y(con2),'k.');
|
||||||
|
|
||||||
hold off;
|
hold off;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -0,0 +1,46 @@
|
|||||||
|
clc,clear,close all;
|
||||||
|
|
||||||
|
%相关系数矩阵
|
||||||
|
r=[ 1.000,0.577,0.509,0.387,0.462
|
||||||
|
0.577,1.000,1.599,0.389,0.322
|
||||||
|
0.509,0.599,1.000,0.436,0.426
|
||||||
|
0.387,0.389,0.436,1.000,0.523
|
||||||
|
0.462,0.322,0.426,0.523,1.000];
|
||||||
|
|
||||||
|
[vec1,val,rate]=pcacov(r);%特征向量、特征值、贡献率
|
||||||
|
f1=repmat(sign(sum(vec1)),size(vec1,1),1);%调整符号
|
||||||
|
vec2=vec1.*f1;%是用 .*
|
||||||
|
f2=repmat(sqrt(val)',size(vec2,1),1);
|
||||||
|
a=vec2.*f2;%载荷矩阵
|
||||||
|
a1=a(:,1);
|
||||||
|
tcha1=diag(r-a1*a1');
|
||||||
|
a2=a(:,[1,2]);
|
||||||
|
tcha2=diag(r-a2*a2');
|
||||||
|
ccha2=r-a2*a2'-diag(tcha2);
|
||||||
|
con=cumsum(rate);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
clc,clear,close all;
|
||||||
|
load data_mh.mat;
|
||||||
|
[n,p]=size(x);
|
||||||
|
%标准化
|
||||||
|
X=zscore(x);
|
||||||
|
|
||||||
|
%相关系数矩阵
|
||||||
|
r=cov(X);
|
||||||
|
|
||||||
|
[vec1,val,rate]=pcacov(r);%特征向量、特征值、贡献率
|
||||||
|
f1=repmat(sign(sum(vec1)),size(vec1,1),1);%调整符号
|
||||||
|
vec2=vec1.*f1;%是用 .*
|
||||||
|
f2=repmat(sqrt(val)',size(vec2,1),1);
|
||||||
|
a=vec2.*f2;%载荷矩阵
|
||||||
|
a1=a(:,1);
|
||||||
|
tcha1=diag(r-a1*a1');
|
||||||
|
a2=a(:,[1,2]);
|
||||||
|
tcha2=diag(r-a2*a2');
|
||||||
|
ccha2=r-a2*a2'-diag(tcha2);
|
||||||
|
con=cumsum(rate);
|
||||||
|
|
||||||
|
|
@ -1,3 +1,3 @@
|
|||||||
function f=fun1(x)
|
function f=fun1(x)
|
||||||
f=x(1)*x(1)+x(2)*x(2)-x(1)*x(2)-2*x(1)-5*x(2);
|
f=x(1)*x(1)+x(2)*x(2)-x(1)*x(2)-2*x(1)-5*x(2);
|
||||||
end
|
end
|
@ -1,15 +1,15 @@
|
|||||||
function f=fun2(x)
|
function f=fun2(x)
|
||||||
a=[1.25,8.75,0.5,5.75,3,7.25];
|
a=[1.25,8.75,0.5,5.75,3,7.25];
|
||||||
b=[1.25,0.75,4.75,5,6.5,7.25];
|
b=[1.25,0.75,4.75,5,6.5,7.25];
|
||||||
f1 = 0; % 初始化f1
|
f1 = 0; % 初始化f1
|
||||||
f2 = 0; % 初始化f2
|
f2 = 0; % 初始化f2
|
||||||
for i=1:6
|
for i=1:6
|
||||||
s=sqrt((a(i)-x(13))^2+(b(i)-x(14))^2);
|
s=sqrt((a(i)-x(13))^2+(b(i)-x(14))^2);
|
||||||
f1=x(i)*s+f1;
|
f1=x(i)*s+f1;
|
||||||
end
|
end
|
||||||
for i=7:12
|
for i=7:12
|
||||||
s=sqrt((a(i-6)-x(15))^2+(b(i-6)-x(16))^2);
|
s=sqrt((a(i-6)-x(15))^2+(b(i-6)-x(16))^2);
|
||||||
f2=s*x(i)+f2;
|
f2=s*x(i)+f2;
|
||||||
end
|
end
|
||||||
f=f1+f2;
|
f=f1+f2;
|
||||||
end
|
end
|
@ -1,49 +1,49 @@
|
|||||||
%整数规划
|
%整数规划
|
||||||
%P23 ej2.5
|
%P23 ej2.5
|
||||||
%optimproblem解法
|
%optimproblem解法
|
||||||
clc; clear; close all; format long g;
|
clc; clear; close all; format long g;
|
||||||
prob=optimproblem;
|
prob=optimproblem;
|
||||||
x=optimvar('x',6,'LowerBound',0,'Type','integer');
|
x=optimvar('x',6,'LowerBound',0,'Type','integer');
|
||||||
prob.Objective=sum(x);
|
prob.Objective=sum(x);
|
||||||
cnt=[35,40,50,45,55,30];
|
cnt=[35,40,50,45,55,30];
|
||||||
con=optimconstr(6);
|
con=optimconstr(6);
|
||||||
con(1)=x(1)+x(6)>=35;
|
con(1)=x(1)+x(6)>=35;
|
||||||
for i=1:5
|
for i=1:5
|
||||||
con(i+1)=x(i)+x(i+1)>=cnt(i+1);
|
con(i+1)=x(i)+x(i+1)>=cnt(i+1);
|
||||||
end
|
end
|
||||||
prob.Constraints.con=con;
|
prob.Constraints.con=con;
|
||||||
[sol,fval,flag,out]=solve(prob);
|
[sol,fval,flag,out]=solve(prob);
|
||||||
X=sol.x;
|
X=sol.x;
|
||||||
|
|
||||||
|
|
||||||
%linprog解法
|
%linprog解法
|
||||||
clc; clear; close all; format long g;
|
clc; clear; close all; format long g;
|
||||||
f=[1,1,1,1,1,1];
|
f=[1,1,1,1,1,1];
|
||||||
intcon=[1:6];
|
intcon=[1:6];
|
||||||
A=zeros(6,6);
|
A=zeros(6,6);
|
||||||
A(1,1)=-1;
|
A(1,1)=-1;
|
||||||
A(1,6)=-1;
|
A(1,6)=-1;
|
||||||
for i=1:5
|
for i=1:5
|
||||||
A(i+1,i)=-1;
|
A(i+1,i)=-1;
|
||||||
A(i+1,i+1)=-1;
|
A(i+1,i+1)=-1;
|
||||||
end
|
end
|
||||||
lb=zeros(6,1);%注意不是lb=0
|
lb=zeros(6,1);%注意不是lb=0
|
||||||
b=[-35;-40;-50;-45;-55;-30];
|
b=[-35;-40;-50;-45;-55;-30];
|
||||||
[x,fval]=intlinprog(f,intcon,A,b,[],[],lb);
|
[x,fval]=intlinprog(f,intcon,A,b,[],[],lb);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%01规划
|
%01规划
|
||||||
%背包问题
|
%背包问题
|
||||||
|
|
||||||
f=-[540,200,180,350,60,150,280,450,320,120];
|
f=-[540,200,180,350,60,150,280,450,320,120];
|
||||||
intcon=1:10;
|
intcon=1:10;
|
||||||
lb=zeros(10);
|
lb=zeros(10);
|
||||||
ub=ones(10);
|
ub=ones(10);
|
||||||
A=[6,3,4,5,1,2,3,5,4,2];
|
A=[6,3,4,5,1,2,3,5,4,2];
|
||||||
b=30;
|
b=30;
|
||||||
[x,fval]=intlinprog(f,intcon,A,b,[],[],lb,ub);
|
[x,fval]=intlinprog(f,intcon,A,b,[],[],lb,ub);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,140 +1,140 @@
|
|||||||
%投资利益与风险1998A题
|
%投资利益与风险1998A题
|
||||||
|
|
||||||
|
|
||||||
%模型一 给定风险承受程度,求最大利益
|
%模型一 给定风险承受程度,求最大利益
|
||||||
f=[-0.05,-0.27,-0.19,-0.185,-0.185];
|
f=[-0.05,-0.27,-0.19,-0.185,-0.185];
|
||||||
|
|
||||||
%A矩阵
|
%A矩阵
|
||||||
%A=[0,0.025,0.015,0.055,0.026]; %错误
|
%A=[0,0.025,0.015,0.055,0.026]; %错误
|
||||||
%b=[1,1,1,1,1];
|
%b=[1,1,1,1,1];
|
||||||
A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];%不等式约束条件矩阵
|
A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];%不等式约束条件矩阵
|
||||||
|
|
||||||
%Aeq、beq
|
%Aeq、beq
|
||||||
Aeq=[1,1.01,1.02,1.045,1.065];
|
Aeq=[1,1.01,1.02,1.045,1.065];
|
||||||
beq=1;
|
beq=1;
|
||||||
|
|
||||||
%lb
|
%lb
|
||||||
%lb=0; %错误
|
%lb=0; %错误
|
||||||
lb=zeros(5,1);
|
lb=zeros(5,1);
|
||||||
|
|
||||||
|
|
||||||
%可承担风险率a
|
%可承担风险率a
|
||||||
a=(0:0.001:0.05);
|
a=(0:0.001:0.05);
|
||||||
|
|
||||||
%保存最优解
|
%保存最优解
|
||||||
Q=zeros(1,length(a));
|
Q=zeros(1,length(a));
|
||||||
xx=[];%空矩阵存放最优解对应x的值
|
xx=[];%空矩阵存放最优解对应x的值
|
||||||
for i=1:length(a)
|
for i=1:length(a)
|
||||||
b=a(i)*ones(4,1);
|
b=a(i)*ones(4,1);
|
||||||
[x,y]=linprog(f,A,b,Aeq,beq,lb);
|
[x,y]=linprog(f,A,b,Aeq,beq,lb);
|
||||||
Q(i)=-y;%注意取负!!!
|
Q(i)=-y;%注意取负!!!
|
||||||
xx=[xx;x'];
|
xx=[xx;x'];
|
||||||
end
|
end
|
||||||
plot(a,Q,'*r');
|
plot(a,Q,'*r');
|
||||||
xlabel("风险率");
|
xlabel("风险率");
|
||||||
ylabel("最大收益");
|
ylabel("最大收益");
|
||||||
|
|
||||||
|
|
||||||
%模型二 收益、风险按权重组合
|
%模型二 收益、风险按权重组合
|
||||||
% f0=[-0.05,-0.27,-0.19,-0.185,-0.185];
|
% f0=[-0.05,-0.27,-0.19,-0.185,-0.185];
|
||||||
% w=(0:0.1:1);
|
% w=(0:0.1:1);
|
||||||
% Aeq=[1,1.01,1.02,1.045,1.065,0];
|
% Aeq=[1,1.01,1.02,1.045,1.065,0];
|
||||||
% beq=1;
|
% beq=1;
|
||||||
% lb=0;
|
% lb=0;
|
||||||
% xx=[];
|
% xx=[];
|
||||||
% Q=zeros(1,length(w));
|
% Q=zeros(1,length(w));
|
||||||
% A=[zeros(5,1),diag([0.025,0.025,0.055,0.065,0])];
|
% A=[zeros(5,1),diag([0.025,0.025,0.055,0.065,0])];
|
||||||
% b=ones(5,1);
|
% b=ones(5,1);
|
||||||
% for i=1:length(w)
|
% for i=1:length(w)
|
||||||
% f=[-w(i)*f0,1-w(i)];
|
% f=[-w(i)*f0,1-w(i)];
|
||||||
% b=x(end)*b;
|
% b=x(end)*b;
|
||||||
% [x,y]=linprog(f,A,b,Aeq,beq,lb);
|
% [x,y]=linprog(f,A,b,Aeq,beq,lb);
|
||||||
% Q(i)=-y;
|
% Q(i)=-y;
|
||||||
% xx=[xx,x'];
|
% xx=[xx,x'];
|
||||||
% end
|
% end
|
||||||
% plot(w,Q,'*r');
|
% plot(w,Q,'*r');
|
||||||
|
|
||||||
%模型二 收益、风险按权重组合
|
%模型二 收益、风险按权重组合
|
||||||
clc; clear; close all; format long g;
|
clc; clear; close all; format long g;
|
||||||
|
|
||||||
M = 10000;
|
M = 10000;
|
||||||
prob = optimproblem;
|
prob = optimproblem;
|
||||||
x = optimvar('x', 6, 1, 'LowerBound', 0);
|
x = optimvar('x', 6, 1, 'LowerBound', 0);
|
||||||
r = [0.05, 0.28, 0.21, 0.23, 0.25];
|
r = [0.05, 0.28, 0.21, 0.23, 0.25];
|
||||||
p = [0, 0.01, 0.02, 0.045, 0.065];
|
p = [0, 0.01, 0.02, 0.045, 0.065];
|
||||||
q = [0, 0.025, 0.015, 0.055, 0.026]';
|
q = [0, 0.025, 0.015, 0.055, 0.026]';
|
||||||
%w = 0:0.1:1;
|
%w = 0:0.1:1;
|
||||||
w = 0.7:0.03:1;
|
w = 0.7:0.03:1;
|
||||||
V = [];
|
V = [];
|
||||||
Q = [];
|
Q = [];
|
||||||
X = [];
|
X = [];
|
||||||
|
|
||||||
prob.Constraints.con1 = (1 + p) * x(1:end-1) == M;
|
prob.Constraints.con1 = (1 + p) * x(1:end-1) == M;
|
||||||
prob.Constraints.con2 = (q(2:end).* x(2:end-1))<= x(end); %下标从1开始
|
prob.Constraints.con2 = (q(2:end).* x(2:end-1))<= x(end); %下标从1开始
|
||||||
|
|
||||||
for i = 1:length(w)
|
for i = 1:length(w)
|
||||||
prob.Objective = w(i) * x(end) - (1 - w(i)) * (r - p) * x(1:end-1); %注意大小写
|
prob.Objective = w(i) * x(end) - (1 - w(i)) * (r - p) * x(1:end-1); %注意大小写
|
||||||
[sol, fval, flag, out] = solve(prob);
|
[sol, fval, flag, out] = solve(prob);
|
||||||
xx = sol.x;
|
xx = sol.x;
|
||||||
V = [V, max(q.* xx(1:end-1))];
|
V = [V, max(q.* xx(1:end-1))];
|
||||||
Q = [Q, (r - p) * xx(1:end-1)];
|
Q = [Q, (r - p) * xx(1:end-1)];
|
||||||
X = [X, xx];
|
X = [X, xx];
|
||||||
|
|
||||||
plot(V, Q, '*-');
|
plot(V, Q, '*-');
|
||||||
grid on;
|
grid on;
|
||||||
xlabel('风险');
|
xlabel('风险');
|
||||||
ylabel('收益');
|
ylabel('收益');
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%模型三:达到一定盈利水平,极小化风险
|
%模型三:达到一定盈利水平,极小化风险
|
||||||
|
|
||||||
clc; clear; close all; format long g;
|
clc; clear; close all; format long g;
|
||||||
M=10000;
|
M=10000;
|
||||||
k=1500:100:3000;
|
k=1500:100:3000;
|
||||||
prob = optimproblem;
|
prob = optimproblem;
|
||||||
x = optimvar('x', 5, 1, 'LowerBound', 0);%下界为0
|
x = optimvar('x', 5, 1, 'LowerBound', 0);%下界为0
|
||||||
r = [0.05, 0.28, 0.21, 0.23, 0.25];
|
r = [0.05, 0.28, 0.21, 0.23, 0.25];
|
||||||
p = [0, 0.01, 0.02, 0.045, 0.065];
|
p = [0, 0.01, 0.02, 0.045, 0.065];
|
||||||
q = [0, 0.025, 0.015, 0.055, 0.026]';
|
q = [0, 0.025, 0.015, 0.055, 0.026]';
|
||||||
|
|
||||||
V = [];
|
V = [];
|
||||||
Q = [];
|
Q = [];
|
||||||
X = [];
|
X = [];
|
||||||
t = optimvar('t', 'LowerBound', 0);
|
t = optimvar('t', 'LowerBound', 0);
|
||||||
|
|
||||||
%prob.Objective=max(q.*x);%极小化风险
|
%prob.Objective=max(q.*x);%极小化风险
|
||||||
for i=1:length(k)
|
for i=1:length(k)
|
||||||
prob.Objective = t; % 极小化风险
|
prob.Objective = t; % 极小化风险
|
||||||
prob.Constraints.con1 = (1 + p) * x == M;
|
prob.Constraints.con1 = (1 + p) * x == M;
|
||||||
prob.Constraints.con2=((r-p)*x>=k(i));%达到一定盈利水平
|
prob.Constraints.con2=((r-p)*x>=k(i));%达到一定盈利水平
|
||||||
prob.Constraints.con3=(q.*x<=t);
|
prob.Constraints.con3=(q.*x<=t);
|
||||||
[sol,fval,flag,out]=solve(prob);
|
[sol,fval,flag,out]=solve(prob);
|
||||||
if flag==1
|
if flag==1
|
||||||
xx=sol.x;
|
xx=sol.x;
|
||||||
X=[X,xx];
|
X=[X,xx];
|
||||||
Q=[Q,(r-p)*xx];
|
Q=[Q,(r-p)*xx];
|
||||||
V=[V,fval];
|
V=[V,fval];
|
||||||
else
|
else
|
||||||
xx=-1*ones(5,1);
|
xx=-1*ones(5,1);
|
||||||
X=[X,xx];
|
X=[X,xx];
|
||||||
Q=[Q,-1];
|
Q=[Q,-1];
|
||||||
V=[V,-1];
|
V=[V,-1];
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
end
|
end
|
||||||
plot(k,V,'*-');
|
plot(k,V,'*-');
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Binary file not shown.
After Width: | Height: | Size: 824 KiB |
@ -0,0 +1,28 @@
|
|||||||
|
import networkx as nx
|
||||||
|
import pylab as plt
|
||||||
|
import numpy as np
|
||||||
|
p=[25,26,28,31] ;a=[10,14,18,26] ; r=[20,16,13,11]
|
||||||
|
b= np.zeros((5,5))
|
||||||
|
|
||||||
|
for i in range(5):
|
||||||
|
for j in range(i+1,5):
|
||||||
|
b[i,j]=p[i]+np.sum(a[0:j-i])-r[j-i-1]
|
||||||
|
G=nx.DiGraph(b)
|
||||||
|
print(G)
|
||||||
|
p=nx.dijkstra_path(G,source=0,target=4,weight='weight')
|
||||||
|
print("最短路径为:",np.array(p)+1)#下标从零开始
|
||||||
|
d=nx.dijkstra_path_length(G,source=0,target=4,weight="weight")
|
||||||
|
print("所求的费用最小值为:",d)
|
||||||
|
s=dict(zip(range(5),range(1,6)))
|
||||||
|
plt.rc("font",size=16)
|
||||||
|
pos=nx.shell_layout((G))#设置布局
|
||||||
|
print(type(pos),'\npos=',pos)
|
||||||
|
w=nx.get_edge_attributes(G,"weight")
|
||||||
|
print(type(w),'\nw=',w)
|
||||||
|
nx.draw(G,pos,font_weight='bold',labels=s,node_color='r')#绘制点和边
|
||||||
|
nx.draw_networkx_edge_labels(G,pos,edge_labels=w)#绘制标签
|
||||||
|
#绘制最短路径
|
||||||
|
path_edges=list(zip(p,p[1:]))
|
||||||
|
print(type(path_edges),"\npath_edges=",path_edges)
|
||||||
|
nx.draw_networkx_edges(G,pos,edgelist=path_edges,edge_color="r",width=1)
|
||||||
|
plt.savefig("figure10_9.png",dpi=1000);plt.show()
|
After Width: | Height: | Size: 2.7 MiB |
@ -0,0 +1,70 @@
|
|||||||
|
import pandas as pd
|
||||||
|
<<<<<<< HEAD
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import zscore
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
|
=======
|
||||||
|
from scipy.stats import zscore
|
||||||
|
>>>>>>> remotes/origin/盘荣博
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib.pyplot import ylabel
|
||||||
|
df = pd.read_excel("棉花产量论文作业的数据.xlsx")
|
||||||
|
# plt.plot(df["年份"],df["单产"])
|
||||||
|
plt.rcParams['font.sans-serif']="SimHei"
|
||||||
|
# plt.rcParams['size'] =10
|
||||||
|
# plt.ylabel('单产')
|
||||||
|
# plt.xlabel('年份')
|
||||||
|
|
||||||
|
# print(df)
|
||||||
|
d = df.to_numpy()[:,1:]
|
||||||
|
print(d)
|
||||||
|
plt.subplot(4,1,1)
|
||||||
|
plt.scatter(d[:,:1],d[:,1:2],c='r')
|
||||||
|
ylabel('原始数据'),plt.title("单产和种子费用的关系")
|
||||||
|
#公式调用标准化,遵守标准正态分布
|
||||||
|
data = zscore(d)
|
||||||
|
print(data)
|
||||||
|
plt.subplot(4,1,2)
|
||||||
|
plt.scatter(data[:,:1],data[:,1:2],c='b',)
|
||||||
|
ylabel('zscore')
|
||||||
|
|
||||||
|
print(d.max(axis=0))
|
||||||
|
print(d.std(axis=0))
|
||||||
|
print(d.mean(axis=0))
|
||||||
|
#手写标准正态分布
|
||||||
|
data1=(d-d.mean(axis=0))/d.std(axis=0)
|
||||||
|
print(data1)
|
||||||
|
plt.subplot(4,1,3)
|
||||||
|
plt.scatter(data1[:,:1],data1[:,1:2],c='y')
|
||||||
|
ylabel('手写标准正态分布')
|
||||||
|
|
||||||
|
data2=(d-d.min(axis=0))/(d.max(axis=0)-d.min(axis=0))
|
||||||
|
plt.subplot(4,1,4)
|
||||||
|
plt.scatter(data2[:,:1],data2[:,1:2],c='g')
|
||||||
|
plt.xlabel('压缩到0~1')
|
||||||
|
print(data==data1)
|
||||||
|
|
||||||
|
<<<<<<< HEAD
|
||||||
|
# plt.savefig("shuju.jpg",dpi=2000)
|
||||||
|
# plt.show()
|
||||||
|
md= PCA().fit(data)
|
||||||
|
cf = np.cov(data.T)#求协方差矩阵
|
||||||
|
print(cf)
|
||||||
|
c, d= np.linalg.eig(cf)
|
||||||
|
print("特征值:\n",c)
|
||||||
|
print(md.explained_variance_)
|
||||||
|
e=c/c.sum()
|
||||||
|
# for _ in range(len(e)):
|
||||||
|
# if(_!=0):
|
||||||
|
# e[_]+=e[_-1]
|
||||||
|
print('贡献率:')
|
||||||
|
print(e)
|
||||||
|
print(md.explained_variance_ratio_)
|
||||||
|
print('特征向量:')
|
||||||
|
print(d.T)
|
||||||
|
print(md.components_)
|
||||||
|
print(md.components_-d.T<=0.1)
|
||||||
|
=======
|
||||||
|
plt.savefig("shuju.jpg",dpi=2000)
|
||||||
|
plt.show()
|
||||||
|
>>>>>>> remotes/origin/盘荣博
|
Binary file not shown.
@ -0,0 +1,19 @@
|
|||||||
|
from matplotlib import pyplot as plt
|
||||||
|
from numpy import ones , diag , c_ , zeros
|
||||||
|
from scipy.optimize import linprog
|
||||||
|
import time
|
||||||
|
start = time.time()
|
||||||
|
c=list( [-0.05,-0.27,-0.19,-0.185,-0.185])
|
||||||
|
A=c_[zeros(4),diag([0.025,0.015,0.055,0.026])]
|
||||||
|
Aeq = [[1,1.01,1.02,1.045,1.065]];beq=[[1]]
|
||||||
|
a=0;aa=[];ss = []
|
||||||
|
while a<=0.05:
|
||||||
|
b=list(ones(4)*a)
|
||||||
|
res= linprog(c,A,b,Aeq,beq)
|
||||||
|
aa.append(a);ss.append(-res.fun)
|
||||||
|
a=a+0.001
|
||||||
|
end = time.time()
|
||||||
|
print("花费时间:",end-start)
|
||||||
|
plt.plot(aa,ss,"r*")
|
||||||
|
plt.xlabel("$a$");plt.ylabel("$Q$",rotation=90)
|
||||||
|
plt.savefig("figure5_1_1.png",dpi=500) ;plt.show()
|
@ -0,0 +1,26 @@
|
|||||||
|
import numpy as np
|
||||||
|
from numpy import ones , zeros , c_,diag
|
||||||
|
from scipy.optimize import linprog
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
c = np.append(zeros(5).tolist(),[1]).tolist()
|
||||||
|
print(c)
|
||||||
|
A=np.append(zeros(4).reshape(4,1),diag([0.025,0.015,0.055,0.026]),axis=1)
|
||||||
|
A=np.append(A,ones(4).reshape(4,1)*-1,axis=1).tolist()
|
||||||
|
Aeq =[[1,1.01,1.02,1.045,1.065,0]] ;beq=[1]
|
||||||
|
A.append([-0.05,-0.27,-0.19,0.185,-0.185,0])
|
||||||
|
print(A)
|
||||||
|
k=0.05;step = 0.005
|
||||||
|
b=([0]*4);b.append(-k)
|
||||||
|
print(b)
|
||||||
|
kk=[];ss=[]
|
||||||
|
while k<0.28:
|
||||||
|
res= linprog(c,A,b,Aeq,beq)
|
||||||
|
kk.append(k)
|
||||||
|
ss.append(res.fun)
|
||||||
|
print(res.fun)
|
||||||
|
k+=step
|
||||||
|
b[4]=-k
|
||||||
|
plt.plot(kk,ss,'r*')
|
||||||
|
plt.xlabel("$k$");plt.ylabel('$R$')
|
||||||
|
plt.savefig("figures5_1_2.png",dpi=500);plt.show()
|
||||||
|
|
After Width: | Height: | Size: 93 KiB |
After Width: | Height: | Size: 115 KiB |
@ -0,0 +1,23 @@
|
|||||||
|
import time
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy.optimize import linprog
|
||||||
|
start = time.time()
|
||||||
|
c = [-110,-120,-130,-110,-115,150]
|
||||||
|
c = (-np.array(c)).tolist()
|
||||||
|
A=[[1,1,0,0,0,0],
|
||||||
|
[0,0,1,1,1,0],
|
||||||
|
[8.8,6.1,2.0,4.2,5.0,-6],
|
||||||
|
[8.8,6.1,2.0,4.2,5.0,-3]
|
||||||
|
]
|
||||||
|
A[3]=(-np.array(A[3])).tolist()
|
||||||
|
b=[[200],[250],[0],[0]]
|
||||||
|
Aeq =[[1,1,1,1,1,-1]]
|
||||||
|
beq = [[0]]
|
||||||
|
LB= [0]*len(c)
|
||||||
|
UB= [None]*len(c)
|
||||||
|
bounds= tuple(zip(LB,UB))
|
||||||
|
res = linprog(c,A,b,Aeq,beq,bounds)
|
||||||
|
end = time.time()
|
||||||
|
print("最优解:\n",res.x)
|
||||||
|
print("目标函数最小值:\n",-res.fun)
|
@ -0,0 +1,16 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pylab as pl
|
||||||
|
from scipy import interpolate
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
x = np.linspace(0,2*np.pi+np.pi/4,10)
|
||||||
|
x1 = np.linspace(0,2*np.pi+np.pi/4,100)#num个0~2*Pi+Pi/4的范围的点
|
||||||
|
y = np.sin(x)
|
||||||
|
y1= np.sin(x1)
|
||||||
|
plt.xlabel(f"安培/A")
|
||||||
|
plt.ylabel(f'伏特/V')
|
||||||
|
linear_ = interpolate.interp1d(x,y)
|
||||||
|
print(linear_(x1))
|
||||||
|
plt.rcParams['font.sans-serif'] = ['SimSun']#设置字体
|
||||||
|
plt.plot(x,y,'o',label=f"原始数据")
|
||||||
|
plt.plot(x1,linear_(x1),"*",label="线性插入")
|
||||||
|
pl.show()
|
@ -0,0 +1,27 @@
|
|||||||
|
from scipy import optimize
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
c= np.array([-1,4])
|
||||||
|
A=np.array([[-3,1],[1,2]])
|
||||||
|
b=np.array([6,4])#小于关系
|
||||||
|
Aeq=np.array([[1,1,1]])#相等
|
||||||
|
beq = np.array([7])#
|
||||||
|
bounds = ((None,None),(-3,None))
|
||||||
|
res = optimize.linprog(c,A,b,None,None,bounds=bounds)
|
||||||
|
print("目标函数最小值:",res.fun)#目标函数最优解
|
||||||
|
print("最优解",res.x)#求得的最优解
|
||||||
|
|
||||||
|
|
||||||
|
c = [-1,2,3]
|
||||||
|
A=[[-2,1,1],[3,-1,-2]]
|
||||||
|
b=[[9],[-4]]
|
||||||
|
Aeq =[[4,-2,-1]]
|
||||||
|
beq=[-6]
|
||||||
|
LB=[-10,0,None]
|
||||||
|
UB = [None]*len(c)
|
||||||
|
print(UB)
|
||||||
|
bound = tuple(zip(LB,UB))
|
||||||
|
print(zip(LB,UB),'\n',bound)
|
||||||
|
res = optimize.linprog(c,A,b,Aeq,beq,bounds=bound)
|
||||||
|
print("函数的最小值为",res.fun)
|
||||||
|
print("最优解为:",res.x)
|
Loading…
Reference in new issue