Compare commits

...

30 Commits

Author SHA1 Message Date
phzrjyvu9 19fa153e5a 因子分析
7 months ago
phzrjyvu9 7c100f95fa 主成分分析
7 months ago
phzrjyvu9 7a93f76da0 层次分析法
7 months ago
p3itgm2rp 5a9d5da45d Merge pull request '和' (#7) from 盘荣博 into main
7 months ago
盘荣博 7f917cf9e6 Merge remote-tracking branch 'remotes/origin/盘荣博' into panrongbo
7 months ago
盘荣博 7c694554d4 修改
7 months ago
p3itgm2rp a1f852b393 Merge pull request '数据可视化' (#6) from 盘荣博 into main
7 months ago
盘荣博 6059412e5a 数据的标准化
7 months ago
盘荣博 e0d39ed553 盘荣博
7 months ago
p3itgm2rp 910206eb1b 添加代码
7 months ago
JCHPJP f12366ca01 acm
7 months ago
p3itgm2rp b19bd9bef5 线性规划的例题
7 months ago
JCHPJP 7b70265a0d 尝试线性模型的acipy模块
7 months ago
JCHPJP ab8bd7dfae 风险投资模型的例子
7 months ago
JCHPJP 22043cdac7 Merge branch '盘荣博' of https://bdgit.educoder.net/p3itgm2rp/mycode
7 months ago
p3itgm2rp 0ec602fbc1 Merge pull request '第一次合并W' (#3) from 王朝群 into main
7 months ago
fighting b789574e3e 第一次尝试
7 months ago
盘荣博 3d0453cf0b 数据可视化
7 months ago
p3itgm2rp aa9c8889bd Merge pull request '三人三个文件夹' (#2) from 盘荣博 into main
7 months ago
盘荣博 19262e6ef2 最小生成树和最短路径
7 months ago
盘荣博 7d1020b93a Initial commit
7 months ago
盘荣博 cb4ffe074c 图(最短路径)(最小生成树)
7 months ago
盘荣博 f5a4c8b16b 投资风险收益、多目标规划(约束法、线性加权)
7 months ago
盘荣博 811bec3b62 整数规划(linprog\optimproblem解法),01规划(背包问题)
7 months ago
盘荣博 d032cbab43 非线性规划料场选址目标函数
7 months ago
盘荣博 97a3f6598d 非线性简单示例目标函数定义
7 months ago
盘荣博 2237326033 非线性规划(P42彩电,求解和灵敏性分析)(简单示例)(选址问题)
7 months ago
盘荣博 2a3a14b6d9 蒙特卡洛(不规则面积和圆周率)
7 months ago
盘荣博 95f484af5c 线性规划例题1_3
7 months ago
p3itgm2rp 371c0c70c3 Merge pull request '第一周' (#1) from 姚安欣 into main
7 months ago

3
.idea/.gitignore vendored

@ -0,0 +1,3 @@
# 默认忽略的文件
/shelf/
/workspace.xml

@ -0,0 +1,12 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="INFORMATION" enabled_by_default="true">
<option name="ignoredPackages">
<value>
<list size="0" />
</value>
</option>
</inspection_tool>
</profile>
</component>

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (mycode)" project-jdk-type="Python SDK" />
</project>

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/mycode.iml" filepath="$PROJECT_DIR$/.idea/mycode.iml" />
</modules>
</component>
</project>

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
</component>
</project>

@ -0,0 +1,2 @@
a=[0]*int(2e4)
print(len(a))

@ -0,0 +1,54 @@
from functools import cmp_to_key
c=[[],[]]
string=[[],[]]
for i in range(2):
a = eval(input())
while a>0:
s=input().split()
s[1],s[2]=eval(s[1]),eval(s[2])
c[i].append(s)
string[i].append(s[0])
a-=1
def cmp(a,b):
if a[1]>b[1]:
return -1
elif a[1]==b[1]:
if a[2]<b[2] :
return -1
else:
return 1
else :
return 1
c[0]=sorted(c[0],key=cmp_to_key(cmp))
# print(c[0])
c[1]=sorted(c[1],key=cmp_to_key(cmp))
# print(c[1])
# m='123'
# n='123'
# print(m==n)
st="lzr010506"
s=set(string[0])&set(string[1])
# for i in c[0]:
# for j in c[1]:
# if i[0] == j[0] :
# s.append(j[0])
# print(s)
ans1=0
ans2=0
i=0
while c[0][i][0] != st:
# print(c[0][i][0])
if c[0][i][0] in s:
ans1+=1
i+=1
ans1= i+1-ans1
i=0
while c[1][i][0]!=st:
# print(c[1][i][0])
if c[1][i][0] in s:
ans2+=1
i+=1
ans2=i+1-ans2
# print(ans1,ans2)
print(min(ans1,ans2))
# print(c[0],'\n',c[1])

@ -0,0 +1,18 @@
import heapq
import ctypes
a=int(input())
b=input().split()
for i in range(len(b)):
b[i]=int(b[i])
heapq.heapify(b)
# print(b)
sum=0
while len(b) != 1:
c,d=heapq.nsmallest(2,b)
# heapq.heappop(b)
# heapq.heappop(b)
b.remove(c)
b.remove(d)
sum+=c+d
heapq.heappush(b,c+d)
print(sum)

@ -0,0 +1,28 @@
import functools
a,b =map(int, input().split(' '))
nums=[]
for i in range(b):
m,n=map(int,input().split(' '))
if m>n:continue;
nums.append([m,n])
def cmp(a,b):#升序
if(a[0]>b[0]):
return 1
else :
return -1#不变
nums=sorted(nums,key=functools.cmp_to_key(cmp))
# for i in nums:
# print(i)
sum = 0
start,end=nums[0][0],nums[0][1]
count=1
while count<len(nums):
if nums[count][0]>=start and nums[count][0]<=end:
if end<=nums[count][1]:
end=nums[count][1]
else :
sum+=end-start+1
start=nums[count][0];end=nums[count][1]
count+=1
sum+=end-start+1
print(a-sum+1)

@ -0,0 +1,7 @@
a,b =map(int, input().split(' '))
nums=[]
for i in range(b):
m,n=map(int,input().split(' '))
nums.extend(range(m,n+1))
nums=set(nums)
print(a+1-len(nums))

@ -0,0 +1,64 @@
%AHP步骤
clc,clear,close all;
A=[1,2,3,5
1/2,1,1/2,2
1/3,2,1,2
1/5,1/2,1/2,1];
[row,col]=size(A);
%判断矩阵一致性检验
n=col;
maxlam=max(eig(A));
RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45];
CI=(maxlam-n)/(n-1);
CR=CI/RI(n);
%判断矩阵确定权重
for i=1:col
sumcol=sum(A(:,i));
for j=1:row
A(j,i)=A(j,i)/sumcol;
end
end
weig=zeros(row,1);
for i=1:row
sumrow=sum(A(i,:));
weig(i)=sumrow/n;
end
%各个指标归一化 按列单位化
data= [1686.4 3183 12000 397
903.6 1916.4 3439.6 43
837.6 817.6 4748 1159
824.9 1296.4 12000 442
2110.2 1465.7 6199.5 228];
[rowd,cold]=size(data);
for i=1:cold
sumcold=sum(data(:,i));
for j=1:rowd
data(j,i)=data(j,i)/sumcold;
end
end
%按权重计算分数
score=data*weig;
projectNames={'老番茄','何同学','木鱼水心','凉风','罗翔'};
figure;
bar(score);%条形图
set(gca, 'XTickLabel', projectNames); %每个条形图标签
xlabel('博主');
ylabel('加权总分');
title('得分');
grid on; % 网格线

@ -0,0 +1,96 @@
clc,clear,format short,close all;
load data_mh.mat;
[n,p]=size(x);
%标准化
X=zscore(x);
%协方差矩阵/相关系数矩阵
R=cov(X);
[V,D]=eig(R);%[特征向量,特征值]
lambda=diag(D);
lambda=lambda(end:-1:1);
total_contri=sum(lambda);
cum_contri=cumsum(lambda);
contri_rate=cum_contri/total_contri;
V1=rot90(V)';
disp(V1);
c1=V1(:,1);
c2=V1(:,2);
XX=X*c1;
YY=X*c2;
figure;
scatter(XX, YY, 'filled');
xlabel('第一主成分');
ylabel('第二主成分');
title('主成分得分图');
grid on;
%散点
figure;
scatter(XX,YY,'k.');
figure;
plot(c1, c2, 'o', 'MarkerSize', 8, 'MarkerFaceColor', 'b');
text(c1, c2, cellstr(num2str((1:p)')), 'VerticalAlignment','bottom', 'HorizontalAlignment','right');
xlabel('第一主成分');
ylabel('第二主成分');
title('主成分载荷图');
grid on;
%主成分得分图Score Plot
X = randn(100, 5);
% 主成分分析
[coeff, score, latent, tsquared, explained, mu] = pca(X);
% 绘制前两个主成分的得分图
figure;
scatter(score(:,1), score(:,2));
xlabel('第一主成分');
ylabel('第二主成分');
title('主成分得分图');
grid on;
% 添加数据点标签
text(score(:,1), score(:,2), num2str((1:size(score,1))'), 'FontSize', 8);

@ -0,0 +1,46 @@
clc,clear,close all;
%相关系数矩阵
r=[ 1.000,0.577,0.509,0.387,0.462
0.577,1.000,1.599,0.389,0.322
0.509,0.599,1.000,0.436,0.426
0.387,0.389,0.436,1.000,0.523
0.462,0.322,0.426,0.523,1.000];
[vec1,val,rate]=pcacov(r);%特征向量、特征值、贡献率
f1=repmat(sign(sum(vec1)),size(vec1,1),1);%调整符号
vec2=vec1.*f1;%是用 .*
f2=repmat(sqrt(val)',size(vec2,1),1);
a=vec2.*f2;%载荷矩阵
a1=a(:,1);
tcha1=diag(r-a1*a1');
a2=a(:,[1,2]);
tcha2=diag(r-a2*a2');
ccha2=r-a2*a2'-diag(tcha2);
con=cumsum(rate);
clc,clear,close all;
load data_mh.mat;
[n,p]=size(x);
%标准化
X=zscore(x);
%相关系数矩阵
r=cov(X);
[vec1,val,rate]=pcacov(r);%特征向量、特征值、贡献率
f1=repmat(sign(sum(vec1)),size(vec1,1),1);%调整符号
vec2=vec1.*f1;%是用 .*
f2=repmat(sqrt(val)',size(vec2,1),1);
a=vec2.*f2;%载荷矩阵
a1=a(:,1);
tcha1=diag(r-a1*a1');
a2=a(:,[1,2]);
tcha2=diag(r-a2*a2');
ccha2=r-a2*a2'-diag(tcha2);
con=cumsum(rate);

@ -0,0 +1,7 @@
**三个文件夹**
数据可视化:暂时没有文件。
图:其中包括最短路径和最小生成树的展示
线性规划: 使用scipy库便且使用scipy的optimize模块下的linprog函数numpy函数统一操作数据以及使用matplotlib库下的pyplot模块

Binary file not shown.

After

Width:  |  Height:  |  Size: 824 KiB

@ -0,0 +1,28 @@
import networkx as nx
import pylab as plt
import numpy as np
p=[25,26,28,31] ;a=[10,14,18,26] ; r=[20,16,13,11]
b= np.zeros((5,5))
for i in range(5):
for j in range(i+1,5):
b[i,j]=p[i]+np.sum(a[0:j-i])-r[j-i-1]
G=nx.DiGraph(b)
print(G)
p=nx.dijkstra_path(G,source=0,target=4,weight='weight')
print("最短路径为:",np.array(p)+1)#下标从零开始
d=nx.dijkstra_path_length(G,source=0,target=4,weight="weight")
print("所求的费用最小值为:",d)
s=dict(zip(range(5),range(1,6)))
plt.rc("font",size=16)
pos=nx.shell_layout((G))#设置布局
print(type(pos),'\npos=',pos)
w=nx.get_edge_attributes(G,"weight")
print(type(w),'\nw=',w)
nx.draw(G,pos,font_weight='bold',labels=s,node_color='r')#绘制点和边
nx.draw_networkx_edge_labels(G,pos,edge_labels=w)#绘制标签
#绘制最短路径
path_edges=list(zip(p,p[1:]))
print(type(path_edges),"\npath_edges=",path_edges)
nx.draw_networkx_edges(G,pos,edgelist=path_edges,edge_color="r",width=1)
plt.savefig("figure10_9.png",dpi=1000);plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

@ -0,0 +1,70 @@
import pandas as pd
<<<<<<< HEAD
import numpy as np
from scipy.stats import zscore
from sklearn.decomposition import PCA
=======
from scipy.stats import zscore
>>>>>>> remotes/origin/盘荣博
import matplotlib.pyplot as plt
from matplotlib.pyplot import ylabel
df = pd.read_excel("棉花产量论文作业的数据.xlsx")
# plt.plot(df["年份"],df["单产"])
plt.rcParams['font.sans-serif']="SimHei"
# plt.rcParams['size'] =10
# plt.ylabel('单产')
# plt.xlabel('年份')
# print(df)
d = df.to_numpy()[:,1:]
print(d)
plt.subplot(4,1,1)
plt.scatter(d[:,:1],d[:,1:2],c='r')
ylabel('原始数据'),plt.title("单产和种子费用的关系")
#公式调用标准化,遵守标准正态分布
data = zscore(d)
print(data)
plt.subplot(4,1,2)
plt.scatter(data[:,:1],data[:,1:2],c='b',)
ylabel('zscore')
print(d.max(axis=0))
print(d.std(axis=0))
print(d.mean(axis=0))
#手写标准正态分布
data1=(d-d.mean(axis=0))/d.std(axis=0)
print(data1)
plt.subplot(4,1,3)
plt.scatter(data1[:,:1],data1[:,1:2],c='y')
ylabel('手写标准正态分布')
data2=(d-d.min(axis=0))/(d.max(axis=0)-d.min(axis=0))
plt.subplot(4,1,4)
plt.scatter(data2[:,:1],data2[:,1:2],c='g')
plt.xlabel('压缩到0~1')
print(data==data1)
<<<<<<< HEAD
# plt.savefig("shuju.jpg",dpi=2000)
# plt.show()
md= PCA().fit(data)
cf = np.cov(data.T)#求协方差矩阵
print(cf)
c, d= np.linalg.eig(cf)
print("特征值:\n",c)
print(md.explained_variance_)
e=c/c.sum()
# for _ in range(len(e)):
# if(_!=0):
# e[_]+=e[_-1]
print('贡献率:')
print(e)
print(md.explained_variance_ratio_)
print('特征向量:')
print(d.T)
print(md.components_)
print(md.components_-d.T<=0.1)
=======
plt.savefig("shuju.jpg",dpi=2000)
plt.show()
>>>>>>> remotes/origin/盘荣博

@ -0,0 +1,19 @@
from matplotlib import pyplot as plt
from numpy import ones , diag , c_ , zeros
from scipy.optimize import linprog
import time
start = time.time()
c=list( [-0.05,-0.27,-0.19,-0.185,-0.185])
A=c_[zeros(4),diag([0.025,0.015,0.055,0.026])]
Aeq = [[1,1.01,1.02,1.045,1.065]];beq=[[1]]
a=0;aa=[];ss = []
while a<=0.05:
b=list(ones(4)*a)
res= linprog(c,A,b,Aeq,beq)
aa.append(a);ss.append(-res.fun)
a=a+0.001
end = time.time()
print("花费时间:",end-start)
plt.plot(aa,ss,"r*")
plt.xlabel("$a$");plt.ylabel("$Q$",rotation=90)
plt.savefig("figure5_1_1.png",dpi=500) ;plt.show()

@ -0,0 +1,26 @@
import numpy as np
from numpy import ones , zeros , c_,diag
from scipy.optimize import linprog
import matplotlib.pyplot as plt
c = np.append(zeros(5).tolist(),[1]).tolist()
print(c)
A=np.append(zeros(4).reshape(4,1),diag([0.025,0.015,0.055,0.026]),axis=1)
A=np.append(A,ones(4).reshape(4,1)*-1,axis=1).tolist()
Aeq =[[1,1.01,1.02,1.045,1.065,0]] ;beq=[1]
A.append([-0.05,-0.27,-0.19,0.185,-0.185,0])
print(A)
k=0.05;step = 0.005
b=([0]*4);b.append(-k)
print(b)
kk=[];ss=[]
while k<0.28:
res= linprog(c,A,b,Aeq,beq)
kk.append(k)
ss.append(res.fun)
print(res.fun)
k+=step
b[4]=-k
plt.plot(kk,ss,'r*')
plt.xlabel("$k$");plt.ylabel('$R$')
plt.savefig("figures5_1_2.png",dpi=500);plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

@ -0,0 +1,56 @@
from scipy.optimize import linprog
import time
import numpy as np
'''
目标函数
min z= -x1 + 4 x2
约束条件
-3x1 + x2 < = 6
x1 + 2x2 <= 4
x2 >= -3
'''
begin = time.time()
c=[-1,4]
A=[[-3,1],[1,2]]
b=[[6],[4]]
bounds=((None , None),(-3,None))
res= linprog(c,A,b,None,None,bounds)
end= time.time()
print("结果为:",res.fun)
print("x的值位",res.x," ",type(res.x))
print(end-begin,"\n",'----------------------------------------')
'''
线性规划问题
max z = x1 - 2x2 - 3x3
约束条件
-2x1 + x2 + x3 <= 9
-3x1 + x2 + 2x3 >= 4
4x1 -2x2 -x3 = -6
x1 >= -10 ,x2 >=0
'''
'''
scipy标准形式
min w= -x1 + 2x2 + 3x3
约束
-2x1 + x2 + x3 <= 9
3x1 - x2 - 2x3 <= -4
'''
c= (-np.array([1,-2,-3])).tolist()
A=[[-2,1,1],[-3,1,2]]
A[1]= (-np.array(A)[1]).tolist()
b= [[9],[4]]
b[1]=(-np.array(b[1])).tolist()
Aeq=[[4,-2,-1]]
beq =[[-6]]
LB =[-10,0,None]
UB = [None]*len(c)
bounds= tuple(zip(LB,UB))
res= linprog(c,A,b,Aeq,beq,bounds)
end= time.time()
print("结果为:",res.fun)
print("x的值位",res.x," ",type(res.x))
print(end-begin,"\n",'----------------------------------------')
print(res)

@ -0,0 +1,23 @@
import time
import numpy as np
from scipy.optimize import linprog
start = time.time()
c = [-110,-120,-130,-110,-115,150]
c = (-np.array(c)).tolist()
A=[[1,1,0,0,0,0],
[0,0,1,1,1,0],
[8.8,6.1,2.0,4.2,5.0,-6],
[8.8,6.1,2.0,4.2,5.0,-3]
]
A[3]=(-np.array(A[3])).tolist()
b=[[200],[250],[0],[0]]
Aeq =[[1,1,1,1,1,-1]]
beq = [[0]]
LB= [0]*len(c)
UB= [None]*len(c)
bounds= tuple(zip(LB,UB))
res = linprog(c,A,b,Aeq,beq,bounds)
end = time.time()
print("最优解:\n",res.x)
print("目标函数最小值:\n",-res.fun)

@ -0,0 +1,16 @@
import numpy as np
import pylab as pl
from scipy import interpolate
import matplotlib.pyplot as plt
x = np.linspace(0,2*np.pi+np.pi/4,10)
x1 = np.linspace(0,2*np.pi+np.pi/4,100)#num个0~2*Pi+Pi/4的范围的点
y = np.sin(x)
y1= np.sin(x1)
plt.xlabel(f"安培/A")
plt.ylabel(f'伏特/V')
linear_ = interpolate.interp1d(x,y)
print(linear_(x1))
plt.rcParams['font.sans-serif'] = ['SimSun']#设置字体
plt.plot(x,y,'o',label=f"原始数据")
plt.plot(x1,linear_(x1),"*",label="线性插入")
pl.show()

@ -0,0 +1,27 @@
from scipy import optimize
import numpy as np
c= np.array([-1,4])
A=np.array([[-3,1],[1,2]])
b=np.array([6,4])#小于关系
Aeq=np.array([[1,1,1]])#相等
beq = np.array([7])#
bounds = ((None,None),(-3,None))
res = optimize.linprog(c,A,b,None,None,bounds=bounds)
print("目标函数最小值:",res.fun)#目标函数最优解
print("最优解",res.x)#求得的最优解
c = [-1,2,3]
A=[[-2,1,1],[3,-1,-2]]
b=[[9],[-4]]
Aeq =[[4,-2,-1]]
beq=[-6]
LB=[-10,0,None]
UB = [None]*len(c)
print(UB)
bound = tuple(zip(LB,UB))
print(zip(LB,UB),'\n',bound)
res = optimize.linprog(c,A,b,Aeq,beq,bounds=bound)
print("函数的最小值为",res.fun)
print("最优解为:",res.x)
Loading…
Cancel
Save