#7

Merged
p3itgm2rp merged 3 commits from 盘荣博 into main 4 months ago

@ -1,5 +1,11 @@
import pandas as pd
<<<<<<< HEAD
import numpy as np
from scipy.stats import zscore
from sklearn.decomposition import PCA
=======
from scipy.stats import zscore
>>>>>>> remotes/origin/盘荣博
import matplotlib.pyplot as plt
from matplotlib.pyplot import ylabel
df = pd.read_excel("棉花产量论文作业的数据.xlsx")
@ -38,5 +44,27 @@ plt.scatter(data2[:,:1],data2[:,1:2],c='g')
plt.xlabel('压缩到0~1')
print(data==data1)
<<<<<<< HEAD
# plt.savefig("shuju.jpg",dpi=2000)
# plt.show()
md= PCA().fit(data)
cf = np.cov(data.T)#求协方差矩阵
print(cf)
c, d= np.linalg.eig(cf)
print("特征值:\n",c)
print(md.explained_variance_)
e=c/c.sum()
# for _ in range(len(e)):
# if(_!=0):
# e[_]+=e[_-1]
print('贡献率:')
print(e)
print(md.explained_variance_ratio_)
print('特征向量:')
print(d.T)
print(md.components_)
print(md.components_-d.T<=0.1)
=======
plt.savefig("shuju.jpg",dpi=2000)
plt.show()
>>>>>>> remotes/origin/盘荣博

Loading…
Cancel
Save