Initial commit

main
唐志超 1 week ago
parent db71490df7
commit f9b98b6235

@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

@ -0,0 +1 @@
任务8.2 分析财政收入数据特征的相关性.py

@ -0,0 +1,12 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
<option name="ignoredIdentifiers">
<list>
<option value="denglu.*" />
</list>
</option>
</inspection_tool>
</profile>
</component>

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.12" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.12" project-jdk-type="Python SDK" />
</project>

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/代码.iml" filepath="$PROJECT_DIR$/.idea/代码.iml" />
</modules>
</component>
</project>

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PySciProjectComponent">
<option name="PY_INTERACTIVE_PLOTS_SUGGESTED" value="true" />
</component>
</project>

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

@ -0,0 +1,15 @@
#-*- coding: utf-8 -*-
def GM11(x0): #自定义灰色预测函数
import numpy as np
x1 = x0.cumsum() #1-AGO序列
z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值MEAN生成序列
z1 = z1.reshape((len(z1),1))
B = np.append(-z1, np.ones_like(z1), axis = 1)
Yn = x0[1:].reshape((len(x0)-1, 1))
[[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数
f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值
delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
C = delta.std()/x0.std()
P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率

@ -0,0 +1,21 @@
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,y
3831732,181.54,448.19,7571,6212.7,6370241,525.71,985.31,60.62,65.66,120,1.029,5321,64.87
3913824,214.63,549.97,9038.16,7601.73,6467115,618.25,1259.2,73.46,95.46,113.5,1.051,6529,99.75
3928907,239.56,686.44,9905.31,8092.82,6560508,638.94,1468.06,81.16,81.16,108.2,1.064,7008,88.11
4282130,261.58,802.59,10444.6,8767.98,6664862,656.58,1678.12,85.72,91.7,102.2,1.092,7694,106.07
4453911,283.14,904.57,11255.7,9422.33,6741400,758.83,1893.52,88.88,114.61,97.7,1.2,8027,137.32
4548852,308.58,1000.69,12018.52,9751.44,6850024,878.26,2139.18,92.85,152.78,98.5,1.198,8549,188.14
4962579,348.09,1121.13,13966.53,11349.47,7006896,923.67,2492.74,94.37,170.62,102.8,1.348,9566,219.91
5029338,387.81,1248.29,14694,11467.35,7125979,978.21,2841.65,97.28,214.53,98.9,1.467,10473,271.91
5070216,453.49,1370.68,13380.47,10671.78,7206229,1009.24,3203.96,103.07,202.18,97.6,1.56,11469,269.1
5210706,533.55,1494.27,15002.59,11570.58,7251888,1175.17,3758.62,109.91,222.51,100.1,1.456,12360,300.55
5407087,598.33,1677.77,16884.16,13120.83,7376720,1348.93,4450.55,117.15,249.01,101.7,1.424,14174,338.45
5744550,665.32,1905.84,18287.24,14468.24,7505322,1519.16,5154.23,130.22,303.41,101.5,1.456,16394,408.86
5994973,738.97,2199.14,19850.66,15444.93,7607220,1696.38,6081.86,128.51,356.99,102.3,1.438,17881,476.72
6236312,877.07,2624.24,22469.22,18951.32,7734787,1863.34,7140.32,149.87,429.36,103.4,1.474,20058,838.99
6529045,1005.37,3187.39,25316.72,20835.95,7841695,2105.54,8287.38,169.19,508.84,105.9,1.515,22114,843.14
6791495,1118.03,3615.77,27609.59,22820.89,7946154,2659.85,9138.21,172.28,557.74,97.5,1.633,24190,1107.67
7110695,1304.48,4476.38,30658.49,25011.61,8061370,3263.57,10748.28,188.57,664.06,103.2,1.638,29549,1399.16
7431755,1700.87,5243.03,34438.08,28209.74,8145797,3412.21,12423.44,204.54,710.66,105.5,1.67,34214,1535.14
7512997,1969.51,5977.27,38053.52,30490.44,8222969,3758.39,13551.21,213.76,760.49,103,1.825,37934,1579.68
7599295,2110.78,6882.85,42049.14,33156.83,8323096,4454.55,15420.14,228.46,852.56,102.6,1.906,41972,2088.14
1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 y
2 3831732 181.54 448.19 7571 6212.7 6370241 525.71 985.31 60.62 65.66 120 1.029 5321 64.87
3 3913824 214.63 549.97 9038.16 7601.73 6467115 618.25 1259.2 73.46 95.46 113.5 1.051 6529 99.75
4 3928907 239.56 686.44 9905.31 8092.82 6560508 638.94 1468.06 81.16 81.16 108.2 1.064 7008 88.11
5 4282130 261.58 802.59 10444.6 8767.98 6664862 656.58 1678.12 85.72 91.7 102.2 1.092 7694 106.07
6 4453911 283.14 904.57 11255.7 9422.33 6741400 758.83 1893.52 88.88 114.61 97.7 1.2 8027 137.32
7 4548852 308.58 1000.69 12018.52 9751.44 6850024 878.26 2139.18 92.85 152.78 98.5 1.198 8549 188.14
8 4962579 348.09 1121.13 13966.53 11349.47 7006896 923.67 2492.74 94.37 170.62 102.8 1.348 9566 219.91
9 5029338 387.81 1248.29 14694 11467.35 7125979 978.21 2841.65 97.28 214.53 98.9 1.467 10473 271.91
10 5070216 453.49 1370.68 13380.47 10671.78 7206229 1009.24 3203.96 103.07 202.18 97.6 1.56 11469 269.1
11 5210706 533.55 1494.27 15002.59 11570.58 7251888 1175.17 3758.62 109.91 222.51 100.1 1.456 12360 300.55
12 5407087 598.33 1677.77 16884.16 13120.83 7376720 1348.93 4450.55 117.15 249.01 101.7 1.424 14174 338.45
13 5744550 665.32 1905.84 18287.24 14468.24 7505322 1519.16 5154.23 130.22 303.41 101.5 1.456 16394 408.86
14 5994973 738.97 2199.14 19850.66 15444.93 7607220 1696.38 6081.86 128.51 356.99 102.3 1.438 17881 476.72
15 6236312 877.07 2624.24 22469.22 18951.32 7734787 1863.34 7140.32 149.87 429.36 103.4 1.474 20058 838.99
16 6529045 1005.37 3187.39 25316.72 20835.95 7841695 2105.54 8287.38 169.19 508.84 105.9 1.515 22114 843.14
17 6791495 1118.03 3615.77 27609.59 22820.89 7946154 2659.85 9138.21 172.28 557.74 97.5 1.633 24190 1107.67
18 7110695 1304.48 4476.38 30658.49 25011.61 8061370 3263.57 10748.28 188.57 664.06 103.2 1.638 29549 1399.16
19 7431755 1700.87 5243.03 34438.08 28209.74 8145797 3412.21 12423.44 204.54 710.66 105.5 1.67 34214 1535.14
20 7512997 1969.51 5977.27 38053.52 30490.44 8222969 3758.39 13551.21 213.76 760.49 103 1.825 37934 1579.68
21 7599295 2110.78 6882.85 42049.14 33156.83 8323096 4454.55 15420.14 228.46 852.56 102.6 1.906 41972 2088.14

@ -0,0 +1,21 @@
,x1,x3,x4,x5,x6,x7,x8,x13
0,3831732,448.19,7571.0,6212.7,6370241,525.71,985.31,5321
1,3913824,549.97,9038.16,7601.73,6467115,618.25,1259.2,6529
2,3928907,686.44,9905.31,8092.82,6560508,638.94,1468.06,7008
3,4282130,802.59,10444.6,8767.98,6664862,656.58,1678.12,7694
4,4453911,904.57,11255.7,9422.33,6741400,758.83,1893.52,8027
5,4548852,1000.69,12018.52,9751.44,6850024,878.26,2139.18,8549
6,4962579,1121.13,13966.53,11349.47,7006896,923.67,2492.74,9566
7,5029338,1248.29,14694.0,11467.35,7125979,978.21,2841.65,10473
8,5070216,1370.68,13380.47,10671.78,7206229,1009.24,3203.96,11469
9,5210706,1494.27,15002.59,11570.58,7251888,1175.17,3758.62,12360
10,5407087,1677.77,16884.16,13120.83,7376720,1348.93,4450.55,14174
11,5744550,1905.84,18287.24,14468.24,7505322,1519.16,5154.23,16394
12,5994973,2199.14,19850.66,15444.93,7607220,1696.38,6081.86,17881
13,6236312,2624.24,22469.22,18951.32,7734787,1863.34,7140.32,20058
14,6529045,3187.39,25316.72,20835.95,7841695,2105.54,8287.38,22114
15,6791495,3615.77,27609.59,22820.89,7946154,2659.85,9138.21,24190
16,7110695,4476.38,30658.49,25011.61,8061370,3263.57,10748.28,29549
17,7431755,5243.03,34438.08,28209.74,8145797,3412.21,12423.44,34214
18,7512997,5977.27,38053.52,30490.44,8222969,3758.39,13551.21,37934
19,7599295,6882.85,42049.14,33156.83,8323096,4454.55,15420.14,41972
1 x1 x3 x4 x5 x6 x7 x8 x13
2 0 3831732 448.19 7571.0 6212.7 6370241 525.71 985.31 5321
3 1 3913824 549.97 9038.16 7601.73 6467115 618.25 1259.2 6529
4 2 3928907 686.44 9905.31 8092.82 6560508 638.94 1468.06 7008
5 3 4282130 802.59 10444.6 8767.98 6664862 656.58 1678.12 7694
6 4 4453911 904.57 11255.7 9422.33 6741400 758.83 1893.52 8027
7 5 4548852 1000.69 12018.52 9751.44 6850024 878.26 2139.18 8549
8 6 4962579 1121.13 13966.53 11349.47 7006896 923.67 2492.74 9566
9 7 5029338 1248.29 14694.0 11467.35 7125979 978.21 2841.65 10473
10 8 5070216 1370.68 13380.47 10671.78 7206229 1009.24 3203.96 11469
11 9 5210706 1494.27 15002.59 11570.58 7251888 1175.17 3758.62 12360
12 10 5407087 1677.77 16884.16 13120.83 7376720 1348.93 4450.55 14174
13 11 5744550 1905.84 18287.24 14468.24 7505322 1519.16 5154.23 16394
14 12 5994973 2199.14 19850.66 15444.93 7607220 1696.38 6081.86 17881
15 13 6236312 2624.24 22469.22 18951.32 7734787 1863.34 7140.32 20058
16 14 6529045 3187.39 25316.72 20835.95 7841695 2105.54 8287.38 22114
17 15 6791495 3615.77 27609.59 22820.89 7946154 2659.85 9138.21 24190
18 16 7110695 4476.38 30658.49 25011.61 8061370 3263.57 10748.28 29549
19 17 7431755 5243.03 34438.08 28209.74 8145797 3412.21 12423.44 34214
20 18 7512997 5977.27 38053.52 30490.44 8222969 3758.39 13551.21 37934
21 19 7599295 6882.85 42049.14 33156.83 8323096 4454.55 15420.14 41972

Binary file not shown.

@ -0,0 +1,10 @@
import time
import keyboard
time.sleep(3) # 等待3秒
with open(r'C:\Users\唐志超\Desktop\pp.txt', encoding='utf-8') as file:
for line in file:
keyboard.write(line)

@ -0,0 +1,15 @@
# -*- coding: utf-8 -*-
###############################################################################
####################### 任务实现 #######################
###############################################################################
# 代码 8-1
import numpy as np
import pandas as pd
# inputfile = '../data/data.csv' ## 输入的数据文件
inputfile = './data.csv' ## 输入的数据文件
data = pd.read_csv(inputfile) ## 读取数据
## 保留两位小数
print('相关系数矩阵为:',np.round(data.corr(method = 'pearson'), 2))

@ -0,0 +1,34 @@
# -*- coding: utf-8 -*-
###############################################################################
####################### 任务实现 #######################
###############################################################################
# 代码 8-2
# 使用了 Lasso 回归模型来分析数据集的特征,
# 从中筛选出与目标变量 y 相关的重要特征,并将结果保存到一个新的 CSV 文件中。以下是对代码的逐步分析:
import numpy as np
import pandas as pd
from sklearn.linear_model import Lasso
# inputfile = '../data/data.csv' #输入的数据文件
inputfile = './data.csv' #输入的数据文件
data = pd.read_csv(inputfile) #读取数据
# lasso = Lasso(1000) #调用Lasso()函数设置λ的值为1000
lasso = Lasso(alpha=1000, max_iter=5000) # 增加迭代次数
lasso.fit(data.iloc[:,0:13],data['y'])
print('相关系数为:',np.round(lasso.coef_,5)) #输出结果,保留五位小数
## 计算相关系数非零的个数
print('相关系数非零个数为:',np.sum(lasso.coef_ != 0))
mask = lasso.coef_ != 0 #返回一个相关系数是否为零的布尔数组
print('相关系数是否为零:',mask)
# outputfile = '../tmp/new_reg_data.csv' #输出的数据文件
outputfile = './new_reg_data.csv' #输出的数据文件
# new_reg_data = data.iloc[:, mask] #返回相关系数非零的数据
# 返回相关系数非零的数据
new_reg_data = data.iloc[:, :13].loc[:, mask] # 只选择0到12列中非零的列
new_reg_data.to_csv(outputfile) #存储数据
print('输出数据的维度为:',new_reg_data.shape) #查看输出数据的维度

@ -0,0 +1,92 @@
# -*- coding: utf-8 -*-
###############################################################################
####################### 任务实现 ########################
###############################################################################
# 代码 8-3这段代码的主要功能是使用灰色预测模型对时间序列数据进行预测并将结果保存到 Excel 文件中。以下是代码的逐步解析:
import numpy as np
import pandas as pd
from GM11 import GM11 # 引入自编的灰色预测函数
# 输入的数据文件
inputfile = './new_reg_data.csv'
inputfile1 = './data.csv'
new_reg_data = pd.read_csv(inputfile) # 读取经过特征选择后的数据
data = pd.read_csv(inputfile1) # 读取总的数据
# 设置索引
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
# 需要预测的列
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
outputfile = './new_reg_data_GM11.xlsx'
y = list(data['y'].values) # 提取财政收入列,合并至新数据框中
y.extend([np.nan, np.nan]) # 添加2014和2015年对应的NaN值
for i in l:
f = GM11(new_reg_data.loc[range(1994, 2014), i].values)[0]
new_reg_data.loc[2014, i] = f(len(new_reg_data) - 1) # 2014年预测结果
new_reg_data.loc[2015, i] = f(len(new_reg_data)) # 2015年预测结果
new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数
# 使用 .xls 扩展名
new_reg_data['y'] = y # 添加财政收入列到new_reg_data
new_reg_data.to_excel(outputfile, index=True) # 结果输出,索引列也写入
# 显示预测结果
print('预测结果为:', new_reg_data.loc[2014:2015, :]) # 预测结果展示
# 代码 8-4
# 利用灰色预测的输出,进一步应用 SVR 模型进行建模与预测,并将结果进行保存
import pandas as pd
import numpy as np
from sklearn.svm import LinearSVR
import matplotlib.pyplot as plt
from sklearn.metrics import explained_variance_score,\
mean_absolute_error,mean_squared_error,\
median_absolute_error,r2_score
# inputfile = '../tmp/new_reg_data_GM11.xls' #灰色预测后保存的路径
inputfile = './new_reg_data_GM11.xlsx' #灰色预测后保存的路径
data = pd.read_excel(inputfile,index_col=0) #读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
data_train = data.loc[range(1994,2014)].copy()#取2014年前的数据建模
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std #数据标准化
# 计算数据的均值和标准差然后对数据进行标准化处理使其均值为0标准差为1。
# 特征数据和标签数据
x_train = data_train[feature].values # 使用 .values 替代 .as_matrix()
y_train = data_train['y'].values # 使用 .values 替代 .as_matrix()
# 创建 SVR 模型实例,并使用训练数据进行拟合。
linearsvr = LinearSVR() #调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
# 将数据再次进行标准化,然后用模型进行预测,并将预测值还原到原始尺度上(解标准化)。
x = ((data[feature] - data_mean[feature])/ \
# data_std[feature]).as_matrix() #预测,并还原结果。
data_std[feature]).values #预测,并还原结果。
data[u'y_pred'] = linearsvr.predict(x) * \
data_std['y'] + data_mean['y']
## SVR预测后保存的结果
# outputfile = '../tmp/new_reg_data_GM11_revenue.xls'
outputfile = './new_reg_data_GM11_revenue.xlsx'
data.to_excel(outputfile)
print('真实值与预测值分别为:',data[['y','y_pred']])
print('预测图为:',data[['y','y_pred']].plot(subplots = True,
style=['b-o','r-*']))
# 绘制真实值与预测值在同一个图形中
# 为确保中文标题能正常显示
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 替换为可以显示中文的字体
plt.rcParams['axes.unicode_minus'] = False # 确保负号显示正常
ax = data[['y', 'y_pred']].plot(style=['r-o', 'b-*'], figsize=(10, 5))
plt.title('真实值与预测值对比') # 添加标题
plt.xlabel('时间') # 添加x轴标签
plt.ylabel('') # 添加y轴标签
# 添加图例,明确哪条线是哪个
plt.legend(['真实值', '预测值']) # 添加图例
plt.show() # 显示图形

@ -0,0 +1,21 @@
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,y
3831732,181.54,448.19,7571,6212.7,6370241,525.71,985.31,60.62,65.66,120,1.029,5321,64.87
3913824,214.63,549.97,9038.16,7601.73,6467115,618.25,1259.2,73.46,95.46,113.5,1.051,6529,99.75
3928907,239.56,686.44,9905.31,8092.82,6560508,638.94,1468.06,81.16,81.16,108.2,1.064,7008,88.11
4282130,261.58,802.59,10444.6,8767.98,6664862,656.58,1678.12,85.72,91.7,102.2,1.092,7694,106.07
4453911,283.14,904.57,11255.7,9422.33,6741400,758.83,1893.52,88.88,114.61,97.7,1.2,8027,137.32
4548852,308.58,1000.69,12018.52,9751.44,6850024,878.26,2139.18,92.85,152.78,98.5,1.198,8549,188.14
4962579,348.09,1121.13,13966.53,11349.47,7006896,923.67,2492.74,94.37,170.62,102.8,1.348,9566,219.91
5029338,387.81,1248.29,14694,11467.35,7125979,978.21,2841.65,97.28,214.53,98.9,1.467,10473,271.91
5070216,453.49,1370.68,13380.47,10671.78,7206229,1009.24,3203.96,103.07,202.18,97.6,1.56,11469,269.1
5210706,533.55,1494.27,15002.59,11570.58,7251888,1175.17,3758.62,109.91,222.51,100.1,1.456,12360,300.55
5407087,598.33,1677.77,16884.16,13120.83,7376720,1348.93,4450.55,117.15,249.01,101.7,1.424,14174,338.45
5744550,665.32,1905.84,18287.24,14468.24,7505322,1519.16,5154.23,130.22,303.41,101.5,1.456,16394,408.86
5994973,738.97,2199.14,19850.66,15444.93,7607220,1696.38,6081.86,128.51,356.99,102.3,1.438,17881,476.72
6236312,877.07,2624.24,22469.22,18951.32,7734787,1863.34,7140.32,149.87,429.36,103.4,1.474,20058,838.99
6529045,1005.37,3187.39,25316.72,20835.95,7841695,2105.54,8287.38,169.19,508.84,105.9,1.515,22114,843.14
6791495,1118.03,3615.77,27609.59,22820.89,7946154,2659.85,9138.21,172.28,557.74,97.5,1.633,24190,1107.67
7110695,1304.48,4476.38,30658.49,25011.61,8061370,3263.57,10748.28,188.57,664.06,103.2,1.638,29549,1399.16
7431755,1700.87,5243.03,34438.08,28209.74,8145797,3412.21,12423.44,204.54,710.66,105.5,1.67,34214,1535.14
7512997,1969.51,5977.27,38053.52,30490.44,8222969,3758.39,13551.21,213.76,760.49,103,1.825,37934,1579.68
7599295,2110.78,6882.85,42049.14,33156.83,8323096,4454.55,15420.14,228.46,852.56,102.6,1.906,41972,2088.14
1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 y
2 3831732 181.54 448.19 7571 6212.7 6370241 525.71 985.31 60.62 65.66 120 1.029 5321 64.87
3 3913824 214.63 549.97 9038.16 7601.73 6467115 618.25 1259.2 73.46 95.46 113.5 1.051 6529 99.75
4 3928907 239.56 686.44 9905.31 8092.82 6560508 638.94 1468.06 81.16 81.16 108.2 1.064 7008 88.11
5 4282130 261.58 802.59 10444.6 8767.98 6664862 656.58 1678.12 85.72 91.7 102.2 1.092 7694 106.07
6 4453911 283.14 904.57 11255.7 9422.33 6741400 758.83 1893.52 88.88 114.61 97.7 1.2 8027 137.32
7 4548852 308.58 1000.69 12018.52 9751.44 6850024 878.26 2139.18 92.85 152.78 98.5 1.198 8549 188.14
8 4962579 348.09 1121.13 13966.53 11349.47 7006896 923.67 2492.74 94.37 170.62 102.8 1.348 9566 219.91
9 5029338 387.81 1248.29 14694 11467.35 7125979 978.21 2841.65 97.28 214.53 98.9 1.467 10473 271.91
10 5070216 453.49 1370.68 13380.47 10671.78 7206229 1009.24 3203.96 103.07 202.18 97.6 1.56 11469 269.1
11 5210706 533.55 1494.27 15002.59 11570.58 7251888 1175.17 3758.62 109.91 222.51 100.1 1.456 12360 300.55
12 5407087 598.33 1677.77 16884.16 13120.83 7376720 1348.93 4450.55 117.15 249.01 101.7 1.424 14174 338.45
13 5744550 665.32 1905.84 18287.24 14468.24 7505322 1519.16 5154.23 130.22 303.41 101.5 1.456 16394 408.86
14 5994973 738.97 2199.14 19850.66 15444.93 7607220 1696.38 6081.86 128.51 356.99 102.3 1.438 17881 476.72
15 6236312 877.07 2624.24 22469.22 18951.32 7734787 1863.34 7140.32 149.87 429.36 103.4 1.474 20058 838.99
16 6529045 1005.37 3187.39 25316.72 20835.95 7841695 2105.54 8287.38 169.19 508.84 105.9 1.515 22114 843.14
17 6791495 1118.03 3615.77 27609.59 22820.89 7946154 2659.85 9138.21 172.28 557.74 97.5 1.633 24190 1107.67
18 7110695 1304.48 4476.38 30658.49 25011.61 8061370 3263.57 10748.28 188.57 664.06 103.2 1.638 29549 1399.16
19 7431755 1700.87 5243.03 34438.08 28209.74 8145797 3412.21 12423.44 204.54 710.66 105.5 1.67 34214 1535.14
20 7512997 1969.51 5977.27 38053.52 30490.44 8222969 3758.39 13551.21 213.76 760.49 103 1.825 37934 1579.68
21 7599295 2110.78 6882.85 42049.14 33156.83 8323096 4454.55 15420.14 228.46 852.56 102.6 1.906 41972 2088.14
Loading…
Cancel
Save