|
|
@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
# coding: utf-8
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def identity_function(x):
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def step_function(x):
|
|
|
|
|
|
|
|
return np.array(x > 0, dtype=np.int)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sigmoid(x):
|
|
|
|
|
|
|
|
return 1 / (1 + np.exp(-x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sigmoid_grad(x):
|
|
|
|
|
|
|
|
return (1.0 - sigmoid(x)) * sigmoid(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def relu(x):
|
|
|
|
|
|
|
|
return np.maximum(0, x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def relu_grad(x):
|
|
|
|
|
|
|
|
grad = np.zeros(x)
|
|
|
|
|
|
|
|
grad[x>=0] = 1
|
|
|
|
|
|
|
|
return grad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def softmax(x):
|
|
|
|
|
|
|
|
if x.ndim == 2:
|
|
|
|
|
|
|
|
x = x.T
|
|
|
|
|
|
|
|
x = x - np.max(x, axis=0)
|
|
|
|
|
|
|
|
y = np.exp(x) / np.sum(np.exp(x), axis=0)
|
|
|
|
|
|
|
|
return y.T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x - np.max(x) # 溢出对策
|
|
|
|
|
|
|
|
return np.exp(x) / np.sum(np.exp(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mean_squared_error(y, t):
|
|
|
|
|
|
|
|
return 0.5 * np.sum((y-t)**2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cross_entropy_error(y, t):
|
|
|
|
|
|
|
|
if y.ndim == 1:
|
|
|
|
|
|
|
|
t = t.reshape(1, t.size)
|
|
|
|
|
|
|
|
y = y.reshape(1, y.size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
|
|
|
|
|
|
|
|
if t.size == y.size:
|
|
|
|
|
|
|
|
t = t.argmax(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size = y.shape[0]
|
|
|
|
|
|
|
|
return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def softmax_loss(X, t):
|
|
|
|
|
|
|
|
y = softmax(X)
|
|
|
|
|
|
|
|
return cross_entropy_error(y, t)
|