|  |  | @ -0,0 +1,284 @@ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | # coding: utf-8 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | import numpy as np | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | from common.functions import * | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | from common.util import im2col, col2im | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class Relu: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.mask = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.mask = (x <= 0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = x.copy() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out[self.mask] = 0 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dout[self.mask] = 0 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = dout | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class Sigmoid: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.out = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = sigmoid(x) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.out = out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = dout * (1.0 - self.out) * self.out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class Affine: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self, W, b): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.W =W | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.b = b | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.x = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.original_x_shape = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 权重和偏置参数的导数 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dW = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.db = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 对应张量 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.original_x_shape = x.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         x = x.reshape(x.shape[0], -1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.x = x | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = np.dot(self.x, self.W) + self.b | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = np.dot(dout, self.W.T) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dW = np.dot(self.x.T, dout) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.db = np.sum(dout, axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = dx.reshape(*self.original_x_shape)  # 还原输入数据的形状(对应张量) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class SoftmaxWithLoss: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.loss = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.y = None # softmax的输出 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.t = None # 监督数据 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x, t): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.t = t | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.y = softmax(x) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.loss = cross_entropy_error(self.y, self.t) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return self.loss | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout=1): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         batch_size = self.t.shape[0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             dx = (self.y - self.t) / batch_size | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         else: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             dx = self.y.copy() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             dx[np.arange(batch_size), self.t] -= 1 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             dx = dx / batch_size | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class Dropout: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     http://arxiv.org/abs/1207.0580 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self, dropout_ratio=0.5): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dropout_ratio = dropout_ratio | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.mask = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x, train_flg=True): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         if train_flg: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.mask = np.random.rand(*x.shape) > self.dropout_ratio | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             return x * self.mask | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         else: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             return x * (1.0 - self.dropout_ratio) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dout * self.mask | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class BatchNormalization: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     http://arxiv.org/abs/1502.03167 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.gamma = gamma | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.beta = beta | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.momentum = momentum | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.input_shape = None # Conv层的情况下为4维,全连接层的情况下为2维   | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 测试时使用的平均值和方差 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.running_mean = running_mean | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.running_var = running_var   | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # backward时使用的中间数据 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.batch_size = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.xc = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.std = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dgamma = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dbeta = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x, train_flg=True): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.input_shape = x.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         if x.ndim != 2: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             N, C, H, W = x.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             x = x.reshape(N, -1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = self.__forward(x, train_flg) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return out.reshape(*self.input_shape) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |              | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __forward(self, x, train_flg): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         if self.running_mean is None: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             N, D = x.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.running_mean = np.zeros(D) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.running_var = np.zeros(D) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |                          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         if train_flg: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             mu = x.mean(axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             xc = x - mu | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             var = np.mean(xc**2, axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             std = np.sqrt(var + 10e-7) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             xn = xc / std | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |              | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.batch_size = x.shape[0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.xc = xc | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.xn = xn | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.std = std | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.running_mean = self.momentum * self.running_mean + (1-self.momentum) * mu | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.running_var = self.momentum * self.running_var + (1-self.momentum) * var             | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         else: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             xc = x - self.running_mean | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             xn = xc / ((np.sqrt(self.running_var + 10e-7))) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |              | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = self.gamma * xn + self.beta  | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         if dout.ndim != 2: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             N, C, H, W = dout.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             dout = dout.reshape(N, -1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = self.__backward(dout) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = dx.reshape(*self.input_shape) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dbeta = dout.sum(axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dgamma = np.sum(self.xn * dout, axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dxn = self.gamma * dout | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dxc = dxn / self.std | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dvar = 0.5 * dstd / self.std | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dxc += (2.0 / self.batch_size) * self.xc * dvar | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dmu = np.sum(dxc, axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = dxc - dmu / self.batch_size | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dgamma = dgamma | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dbeta = dbeta | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class Convolution: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self, W, b, stride=1, pad=0): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.W = W | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.b = b | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.stride = stride | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.pad = pad | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 中间数据(backward时使用) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.x = None    | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.col = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.col_W = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 权重和偏置参数的梯度 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dW = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.db = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         FN, C, FH, FW = self.W.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         N, C, H, W = x.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out_h = 1 + int((H + 2*self.pad - FH) / self.stride) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out_w = 1 + int((W + 2*self.pad - FW) / self.stride) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         col = im2col(x, FH, FW, self.stride, self.pad) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         col_W = self.W.reshape(FN, -1).T | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = np.dot(col, col_W) + self.b | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.x = x | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.col = col | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.col_W = col_W | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         FN, C, FH, FW = self.W.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dout = dout.transpose(0,2,3,1).reshape(-1, FN) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.db = np.sum(dout, axis=0) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dW = np.dot(self.col.T, dout) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dcol = np.dot(dout, self.col_W.T) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class Pooling: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self, pool_h, pool_w, stride=1, pad=0): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.pool_h = pool_h | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.pool_w = pool_w | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.stride = stride | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.pad = pad | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.x = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.arg_max = None | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def forward(self, x): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         N, C, H, W = x.shape | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out_h = int(1 + (H - self.pool_h) / self.stride) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out_w = int(1 + (W - self.pool_w) / self.stride) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         col = col.reshape(-1, self.pool_h*self.pool_w) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         arg_max = np.argmax(col, axis=1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = np.max(col, axis=1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.x = x | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.arg_max = arg_max | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return out | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def backward(self, dout): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dout = dout.transpose(0, 2, 3, 1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         pool_size = self.pool_h * self.pool_w | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dmax = np.zeros((dout.size, pool_size)) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dmax = dmax.reshape(dout.shape + (pool_size,))  | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return dx |