|
|
|
@ -0,0 +1,192 @@
|
|
|
|
|
#!/usr/bin/python3
|
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
|
|
import sys, os
|
|
|
|
|
import numpy as np
|
|
|
|
|
from dataset.mnist import load_mnist
|
|
|
|
|
from PIL import Image, ImageQt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from qt.layout import Ui_MainWindow
|
|
|
|
|
from qt.paintboard import PaintBoard
|
|
|
|
|
|
|
|
|
|
from PyQt5.QtWidgets import QMainWindow, QDesktopWidget, QApplication
|
|
|
|
|
from PyQt5.QtWidgets import QLabel, QMessageBox, QPushButton, QFrame
|
|
|
|
|
from PyQt5.QtGui import QPainter, QPen, QPixmap, QColor, QImage
|
|
|
|
|
from PyQt5.QtCore import Qt, QPoint, QSize
|
|
|
|
|
|
|
|
|
|
from simple_convnet import SimpleConvNet
|
|
|
|
|
from common.functions import softmax
|
|
|
|
|
from deep_convnet import DeepConvNet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODE_MNIST = 1 # MNIST随机抽取
|
|
|
|
|
MODE_WRITE = 2 # 手写输入
|
|
|
|
|
|
|
|
|
|
Thresh = 0.5 # 识别结果置信度阈值
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 读取MNIST数据集
|
|
|
|
|
(_, _), (x_test, _) = load_mnist(normalize=True, flatten=False, one_hot_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 初始化网络
|
|
|
|
|
|
|
|
|
|
# 网络1:简单CNN
|
|
|
|
|
"""
|
|
|
|
|
conv - relu - pool - affine - relu - affine - softmax
|
|
|
|
|
"""
|
|
|
|
|
network = SimpleConvNet(input_dim=(1,28,28),
|
|
|
|
|
conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
|
|
|
|
|
hidden_size=100, output_size=10, weight_init_std=0.01)
|
|
|
|
|
network.load_params("params.pkl")
|
|
|
|
|
|
|
|
|
|
# 网络2:深度CNN
|
|
|
|
|
# network = DeepConvNet()
|
|
|
|
|
# network.load_params("deep_convnet_params.pkl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MainWindow(QMainWindow,Ui_MainWindow):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(MainWindow,self).__init__()
|
|
|
|
|
|
|
|
|
|
# 初始化参数
|
|
|
|
|
self.mode = MODE_MNIST
|
|
|
|
|
self.result = [0, 0]
|
|
|
|
|
|
|
|
|
|
# 初始化UI
|
|
|
|
|
self.setupUi(self)
|
|
|
|
|
self.center()
|
|
|
|
|
|
|
|
|
|
# 初始化画板
|
|
|
|
|
self.paintBoard = PaintBoard(self, Size = QSize(224, 224), Fill = QColor(0,0,0,0))
|
|
|
|
|
self.paintBoard.setPenColor(QColor(0,0,0,0))
|
|
|
|
|
self.dArea_Layout.addWidget(self.paintBoard)
|
|
|
|
|
|
|
|
|
|
self.clearDataArea()
|
|
|
|
|
|
|
|
|
|
# 窗口居中
|
|
|
|
|
def center(self):
|
|
|
|
|
# 获得窗口
|
|
|
|
|
framePos = self.frameGeometry()
|
|
|
|
|
# 获得屏幕中心点
|
|
|
|
|
scPos = QDesktopWidget().availableGeometry().center()
|
|
|
|
|
# 显示到屏幕中心
|
|
|
|
|
framePos.moveCenter(scPos)
|
|
|
|
|
self.move(framePos.topLeft())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 窗口关闭事件
|
|
|
|
|
def closeEvent(self, event):
|
|
|
|
|
reply = QMessageBox.question(self, 'Message',
|
|
|
|
|
"Are you sure to quit?", QMessageBox.Yes |
|
|
|
|
|
QMessageBox.No, QMessageBox.Yes)
|
|
|
|
|
|
|
|
|
|
if reply == QMessageBox.Yes:
|
|
|
|
|
event.accept()
|
|
|
|
|
else:
|
|
|
|
|
event.ignore()
|
|
|
|
|
|
|
|
|
|
# 清除数据待输入区
|
|
|
|
|
def clearDataArea(self):
|
|
|
|
|
self.paintBoard.Clear()
|
|
|
|
|
self.lbDataArea.clear()
|
|
|
|
|
self.lbResult.clear()
|
|
|
|
|
self.lbCofidence.clear()
|
|
|
|
|
self.result = [0, 0]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
回调函数
|
|
|
|
|
"""
|
|
|
|
|
# 模式下拉列表回调
|
|
|
|
|
def cbBox_Mode_Callback(self, text):
|
|
|
|
|
if text == '1:MINIST随机抽取':
|
|
|
|
|
self.mode = MODE_MNIST
|
|
|
|
|
self.clearDataArea()
|
|
|
|
|
self.pbtGetMnist.setEnabled(True)
|
|
|
|
|
|
|
|
|
|
self.paintBoard.setBoardFill(QColor(0,0,0,0))
|
|
|
|
|
self.paintBoard.setPenColor(QColor(0,0,0,0))
|
|
|
|
|
|
|
|
|
|
elif text == '2:鼠标手写输入':
|
|
|
|
|
self.mode = MODE_WRITE
|
|
|
|
|
self.clearDataArea()
|
|
|
|
|
self.pbtGetMnist.setEnabled(False)
|
|
|
|
|
|
|
|
|
|
# 更改背景
|
|
|
|
|
self.paintBoard.setBoardFill(QColor(0,0,0,255))
|
|
|
|
|
self.paintBoard.setPenColor(QColor(255,255,255,255))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 数据清除
|
|
|
|
|
def pbtClear_Callback(self):
|
|
|
|
|
self.clearDataArea()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 识别
|
|
|
|
|
def pbtPredict_Callback(self):
|
|
|
|
|
__img, img_array =[],[] # 将图像统一从qimage->pil image -> np.array [1, 1, 28, 28]
|
|
|
|
|
|
|
|
|
|
# 获取qimage格式图像
|
|
|
|
|
if self.mode == MODE_MNIST:
|
|
|
|
|
__img = self.lbDataArea.pixmap() # label内若无图像返回None
|
|
|
|
|
if __img == None: # 无图像则用纯黑代替
|
|
|
|
|
# __img = QImage(224, 224, QImage.Format_Grayscale8)
|
|
|
|
|
__img = ImageQt.ImageQt(Image.fromarray(np.uint8(np.zeros([224,224]))))
|
|
|
|
|
else: __img = __img.toImage()
|
|
|
|
|
elif self.mode == MODE_WRITE:
|
|
|
|
|
__img = self.paintBoard.getContentAsQImage()
|
|
|
|
|
|
|
|
|
|
# 转换成pil image类型处理
|
|
|
|
|
pil_img = ImageQt.fromqimage(__img)
|
|
|
|
|
pil_img = pil_img.resize((28, 28), Image.ANTIALIAS)
|
|
|
|
|
|
|
|
|
|
# pil_img.save('test.png')
|
|
|
|
|
|
|
|
|
|
img_array = np.array(pil_img.convert('L')).reshape(1,1,28, 28) / 255.0
|
|
|
|
|
# img_array = np.where(img_array>0.5, 1, 0)
|
|
|
|
|
|
|
|
|
|
# reshape成网络输入类型
|
|
|
|
|
__result = network.predict(img_array) # shape:[1, 10]
|
|
|
|
|
|
|
|
|
|
# print (__result)
|
|
|
|
|
|
|
|
|
|
# 将预测结果使用softmax输出
|
|
|
|
|
__result = softmax(__result)
|
|
|
|
|
|
|
|
|
|
self.result[0] = np.argmax(__result) # 预测的数字
|
|
|
|
|
self.result[1] = __result[0, self.result[0]] # 置信度
|
|
|
|
|
|
|
|
|
|
self.lbResult.setText("%d" % (self.result[0]))
|
|
|
|
|
self.lbCofidence.setText("%.8f" % (self.result[1]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 随机抽取
|
|
|
|
|
def pbtGetMnist_Callback(self):
|
|
|
|
|
self.clearDataArea()
|
|
|
|
|
|
|
|
|
|
# 随机抽取一张测试集图片,放大后显示
|
|
|
|
|
img = x_test[np.random.randint(0, 9999)] # shape:[1,28,28]
|
|
|
|
|
img = img.reshape(28, 28) # shape:[28,28]
|
|
|
|
|
|
|
|
|
|
img = img * 0xff # 恢复灰度值大小
|
|
|
|
|
pil_img = Image.fromarray(np.uint8(img))
|
|
|
|
|
pil_img = pil_img.resize((224, 224)) # 图像放大显示
|
|
|
|
|
|
|
|
|
|
# 将pil图像转换成qimage类型
|
|
|
|
|
qimage = ImageQt.ImageQt(pil_img)
|
|
|
|
|
|
|
|
|
|
# 将qimage类型图像显示在label
|
|
|
|
|
pix = QPixmap.fromImage(qimage)
|
|
|
|
|
self.lbDataArea.setPixmap(pix)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
app = QApplication(sys.argv)
|
|
|
|
|
Gui = MainWindow()
|
|
|
|
|
Gui.show()
|
|
|
|
|
|
|
|
|
|
sys.exit(app.exec_())
|