|  |  | @ -0,0 +1,160 @@ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | # coding: utf-8 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | import sys, os | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | import pickle | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | import numpy as np | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | from collections import OrderedDict | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | from common.layers import * | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | from common.gradient import numerical_gradient | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | class SimpleConvNet: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     """简单的ConvNet | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     conv - relu - pool - affine - relu - affine - softmax | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |      | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     Parameters | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     ---------- | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     input_size : 输入大小(MNIST的情况下为784) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100]) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     output_size : 输出大小(MNIST的情况下为10) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     activation : 'relu' or 'sigmoid' | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     weight_init_std : 指定权重的标准差(e.g. 0.01) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         指定'relu'或'he'的情况下设定“He的初始值” | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值” | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def __init__(self, input_dim=(1, 28, 28),  | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |                  conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1}, | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |                  hidden_size=100, output_size=10, weight_init_std=0.01): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         filter_num = conv_param['filter_num'] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         filter_size = conv_param['filter_size'] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         filter_pad = conv_param['pad'] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         filter_stride = conv_param['stride'] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         input_size = input_dim[1] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2)) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 初始化权重 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.params = {} | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.params['W1'] = weight_init_std * \ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |                             np.random.randn(filter_num, input_dim[0], filter_size, filter_size) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.params['b1'] = np.zeros(filter_num) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.params['W2'] = weight_init_std * \ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |                             np.random.randn(pool_output_size, hidden_size) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.params['b2'] = np.zeros(hidden_size) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.params['W3'] = weight_init_std * \ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |                             np.random.randn(hidden_size, output_size) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.params['b3'] = np.zeros(output_size) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 生成层 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.layers = OrderedDict() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'], | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |                                            conv_param['stride'], conv_param['pad']) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.layers['Relu1'] = Relu() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2']) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.layers['Relu2'] = Relu() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3']) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.last_layer = SoftmaxWithLoss() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def predict(self, x): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         for layer in self.layers.values(): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             x = layer.forward(x) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return x | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def loss(self, x, t): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         """求损失函数 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         参数x是输入数据、t是教师标签 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         y = self.predict(x) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return self.last_layer.forward(y, t) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def accuracy(self, x, t, batch_size=100): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         if t.ndim != 1 : t = np.argmax(t, axis=1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         acc = 0.0 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         for i in range(int(x.shape[0] / batch_size)): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             tx = x[i*batch_size:(i+1)*batch_size] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             tt = t[i*batch_size:(i+1)*batch_size] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             y = self.predict(tx) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             y = np.argmax(y, axis=1) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             acc += np.sum(y == tt)  | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return acc / x.shape[0] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def numerical_gradient(self, x, t): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         """求梯度(数值微分) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         Parameters | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         ---------- | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         x : 输入数据 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         t : 教师标签 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         Returns | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         ------- | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         具有各层的梯度的字典变量 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             grads['W1']、grads['W2']、...是各层的权重 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             grads['b1']、grads['b2']、...是各层的偏置 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         loss_w = lambda w: self.loss(x, t) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         grads = {} | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         for idx in (1, 2, 3): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)]) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)]) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return grads | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def gradient(self, x, t): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         """求梯度(误差反向传播法) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         Parameters | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         ---------- | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         x : 输入数据 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         t : 教师标签 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         Returns | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         ------- | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         具有各层的梯度的字典变量 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             grads['W1']、grads['W2']、...是各层的权重 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             grads['b1']、grads['b2']、...是各层的偏置 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         """ | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # forward | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         self.loss(x, t) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # backward | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dout = 1 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         dout = self.last_layer.backward(dout) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         layers = list(self.layers.values()) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         layers.reverse() | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         for layer in layers: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             dout = layer.backward(dout) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         # 设定 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         grads = {} | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         return grads | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |          | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def save_params(self, file_name="params.pkl"): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         params = {} | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         for key, val in self.params.items(): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             params[key] = val | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         with open(file_name, 'wb') as f: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             pickle.dump(params, f) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |     def load_params(self, file_name="params.pkl"): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         with open(file_name, 'rb') as f: | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             params = pickle.load(f) | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         for key, val in params.items(): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.params[key] = val | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  | 
 | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |         for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']): | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.layers[key].W = self.params['W' + str(i+1)] | 
			
		
	
		
		
			
				
					
					|  |  |  |  |  |  |  |             self.layers[key].b = self.params['b' + str(i+1)] |