|
|
@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
# coding: utf-8
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def smooth_curve(x):
|
|
|
|
|
|
|
|
"""用于使损失函数的图形变圆滑
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考:http://glowingpython.blogspot.jp/2012/02/convolution-with-numpy.html
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
window_len = 11
|
|
|
|
|
|
|
|
s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]
|
|
|
|
|
|
|
|
w = np.kaiser(window_len, 2)
|
|
|
|
|
|
|
|
y = np.convolve(w/w.sum(), s, mode='valid')
|
|
|
|
|
|
|
|
return y[5:len(y)-5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def shuffle_dataset(x, t):
|
|
|
|
|
|
|
|
"""打乱数据集
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
x : 训练数据
|
|
|
|
|
|
|
|
t : 监督数据
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
x, t : 打乱的训练数据和监督数据
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
permutation = np.random.permutation(x.shape[0])
|
|
|
|
|
|
|
|
x = x[permutation,:] if x.ndim == 2 else x[permutation,:,:,:]
|
|
|
|
|
|
|
|
t = t[permutation]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return x, t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv_output_size(input_size, filter_size, stride=1, pad=0):
|
|
|
|
|
|
|
|
return (input_size + 2*pad - filter_size) / stride + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
input_data : 由(数据量, 通道, 高, 长)的4维数组构成的输入数据
|
|
|
|
|
|
|
|
filter_h : 滤波器的高
|
|
|
|
|
|
|
|
filter_w : 滤波器的长
|
|
|
|
|
|
|
|
stride : 步幅
|
|
|
|
|
|
|
|
pad : 填充
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
col : 2维数组
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
N, C, H, W = input_data.shape
|
|
|
|
|
|
|
|
out_h = (H + 2*pad - filter_h)//stride + 1
|
|
|
|
|
|
|
|
out_w = (W + 2*pad - filter_w)//stride + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = np.pad(input_data, [(0,0), (0,0), (pad, pad), (pad, pad)], 'constant')
|
|
|
|
|
|
|
|
col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for y in range(filter_h):
|
|
|
|
|
|
|
|
y_max = y + stride*out_h
|
|
|
|
|
|
|
|
for x in range(filter_w):
|
|
|
|
|
|
|
|
x_max = x + stride*out_w
|
|
|
|
|
|
|
|
col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N*out_h*out_w, -1)
|
|
|
|
|
|
|
|
return col
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
|
|
|
col :
|
|
|
|
|
|
|
|
input_shape : 输入数据的形状(例:(10, 1, 28, 28))
|
|
|
|
|
|
|
|
filter_h :
|
|
|
|
|
|
|
|
filter_w
|
|
|
|
|
|
|
|
stride
|
|
|
|
|
|
|
|
pad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
N, C, H, W = input_shape
|
|
|
|
|
|
|
|
out_h = (H + 2*pad - filter_h)//stride + 1
|
|
|
|
|
|
|
|
out_w = (W + 2*pad - filter_w)//stride + 1
|
|
|
|
|
|
|
|
col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = np.zeros((N, C, H + 2*pad + stride - 1, W + 2*pad + stride - 1))
|
|
|
|
|
|
|
|
for y in range(filter_h):
|
|
|
|
|
|
|
|
y_max = y + stride*out_h
|
|
|
|
|
|
|
|
for x in range(filter_w):
|
|
|
|
|
|
|
|
x_max = x + stride*out_w
|
|
|
|
|
|
|
|
img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return img[:, :, pad:H + pad, pad:W + pad]
|