|
|
|
@ -0,0 +1,55 @@
|
|
|
|
|
#include <iostream>
|
|
|
|
|
#include <vector>
|
|
|
|
|
#include <queue>
|
|
|
|
|
#include <cmath>
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
const int N = (1 << 20) + 10;
|
|
|
|
|
int n,m;
|
|
|
|
|
int v[N],w[N];
|
|
|
|
|
int res = -1;
|
|
|
|
|
int s[N]; // s[i]存储的是从第1件物品到第i件物品的价值总和
|
|
|
|
|
|
|
|
|
|
struct good{
|
|
|
|
|
int idx,c,r,tv; // idx表示选法下标,c表示该选法的当前总价值,r表示当前选法的剩余总价值,tv表示该选法的当前总体积
|
|
|
|
|
bool operator > (const good& W) const{
|
|
|
|
|
return W.c + W.r > c + r;
|
|
|
|
|
}
|
|
|
|
|
}goods[N];
|
|
|
|
|
|
|
|
|
|
int bfs(){
|
|
|
|
|
goods[1] = {1,0,0,0};
|
|
|
|
|
priority_queue<good,vector<good>,greater<good>> q;
|
|
|
|
|
q.push(goods[1]);
|
|
|
|
|
|
|
|
|
|
while(q.size()){
|
|
|
|
|
auto t = q.top();
|
|
|
|
|
// cout << t.idx << endl;
|
|
|
|
|
q.pop();
|
|
|
|
|
int idx = t.idx << 1;
|
|
|
|
|
goods[idx] = {idx,goods[t.idx].c,s[n] - s[(int)log2(idx)],goods[t.idx].tv};
|
|
|
|
|
goods[idx + 1] = {idx + 1,goods[t.idx].c + w[(int)log2(idx)],s[n] - s[(int)log2(idx)],goods[t.idx].tv + v[(int)log2(idx)]};
|
|
|
|
|
if((int)log2(t.idx) == n) { // 假如已经是子节点,则更新答案
|
|
|
|
|
res = max(res,t.c);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(goods[idx].tv <= m && goods[idx].c + goods[idx].r > res) q.push(goods[idx]); // 假如当前选法的总体积不超过背包容量,且当前价值+剩余价值 > 当前最优解,则装入背包
|
|
|
|
|
if(goods[idx + 1].tv <= m && goods[idx + 1].c + goods[idx + 1].r > res) q.push(goods[idx + 1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main(){
|
|
|
|
|
cin >> n >> m;
|
|
|
|
|
for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i],s[i] = s[i - 1] + w[i];
|
|
|
|
|
//
|
|
|
|
|
// for(int i = 2; i < 1 << n + 1; i ++){
|
|
|
|
|
// goods[i] = {i,goods[i >> 1].c + (i&1)*w[(int)log2(i)],s[n] - s[(int)log2(i)],goods[i >> 1].tv + (i&1)*v[(int)log2(i)]};
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// for(int i = 1; i < 1 << n + 1; i ++) printf("i = %d,c[i] = %d,r[i] = %d,tv[i] = %d\n",goods[i].idx,goods[i].c,goods[i].r,goods[i].tv);
|
|
|
|
|
cout << bfs() << endl;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|