|
|
@ -2,7 +2,7 @@ import math
|
|
|
|
import threading
|
|
|
|
import threading
|
|
|
|
import time
|
|
|
|
import time
|
|
|
|
import contextlib
|
|
|
|
import contextlib
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import cv2
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch
|
|
|
@ -20,6 +20,10 @@ import os
|
|
|
|
import nvidia_smi
|
|
|
|
import nvidia_smi
|
|
|
|
from ctypes import windll
|
|
|
|
from ctypes import windll
|
|
|
|
import math
|
|
|
|
import math
|
|
|
|
|
|
|
|
import platform
|
|
|
|
|
|
|
|
import curses
|
|
|
|
|
|
|
|
from termcolor import colored, cprint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FILE = Path(__file__).resolve()
|
|
|
|
FILE = Path(__file__).resolve()
|
|
|
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
|
|
|
ROOT = FILE.parents[0] # YOLOv5 root directory
|
|
|
@ -29,18 +33,54 @@ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 清空命令指示符输出
|
|
|
|
# 清空命令指示符输出
|
|
|
|
def clear():
|
|
|
|
|
|
|
|
_ = os.system('cls')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def clear():
|
|
|
|
|
|
|
|
# 对于非 Windows 系统使用 ANSI 转义序列来清除屏幕
|
|
|
|
|
|
|
|
if platform.system() != 'Windows':
|
|
|
|
|
|
|
|
print("\033c")
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
# 使用 curses 库来清除屏幕,从而避免使用 os.system() .
|
|
|
|
|
|
|
|
stdscr = curses.initscr()
|
|
|
|
|
|
|
|
curses.curs_set(0) # 隐藏光标
|
|
|
|
|
|
|
|
stdscr.clear() # 清空屏幕
|
|
|
|
|
|
|
|
stdscr.refresh() # 刷新屏幕
|
|
|
|
|
|
|
|
time.sleep(0.1) # 等待一会儿以确保清屏成功
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
|
|
logging.error(f"Clear screen failed with error: {e}")
|
|
|
|
|
|
|
|
# 引发异常以向调用者报告错误
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finally:
|
|
|
|
|
|
|
|
# 恢复 curses 库的原始设置
|
|
|
|
|
|
|
|
curses.endwin()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 添加一些额外的效果来增强用户体验(可选)
|
|
|
|
|
|
|
|
cprint(colored('屏幕已被清除!', 'green', attrs=['bold', 'underline']))
|
|
|
|
|
|
|
|
time.sleep(0.5)
|
|
|
|
|
|
|
|
cprint(colored('请稍等...', 'cyan', attrs=['blink', 'reverse']))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_cache = None
|
|
|
|
# 检查是否为管理员权限
|
|
|
|
# 检查是否为管理员权限
|
|
|
|
def is_admin():
|
|
|
|
def is_admin():
|
|
|
|
|
|
|
|
global _cache
|
|
|
|
|
|
|
|
if _cache is not None:
|
|
|
|
|
|
|
|
# 若缓存可用,则立即返回缓存结果
|
|
|
|
|
|
|
|
return _cache
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
return windll.shell32.IsUserAnAdmin()
|
|
|
|
# 检查当前平台是否支持获取管理员权限
|
|
|
|
|
|
|
|
if os.name != 'nt':
|
|
|
|
|
|
|
|
raise OSError('Unsupported platform')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 检查当前用户是否为管理员
|
|
|
|
|
|
|
|
is_admin = (os.getuid() == 0) or (os.system('net session >nul 2>&1') == 0)
|
|
|
|
|
|
|
|
_cache = is_admin # 缓存当前结果
|
|
|
|
|
|
|
|
return is_admin
|
|
|
|
except OSError as err:
|
|
|
|
except OSError as err:
|
|
|
|
print('OS error: {0}'.format(err))
|
|
|
|
logging.error('Failed to check admin status: %s', err)
|
|
|
|
return False
|
|
|
|
raise err # 抛出异常以引起关注
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 简单检查gpu是否够格
|
|
|
|
# 简单检查gpu是否够格
|
|
|
|
def check_gpu():
|
|
|
|
def check_gpu():
|
|
|
@ -56,124 +96,181 @@ def check_gpu():
|
|
|
|
return 1
|
|
|
|
return 1
|
|
|
|
return 0
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#获取最接近 x 且可以被除数 divisor 整除的整数
|
|
|
|
def make_divisible(x, divisor):
|
|
|
|
def make_divisible(x, divisor):
|
|
|
|
# Returns nearest x divisible by divisor
|
|
|
|
# 取最大值并转换为整数类型
|
|
|
|
if isinstance(divisor, torch.Tensor):
|
|
|
|
if isinstance(divisor, torch.Tensor):
|
|
|
|
divisor = int(divisor.max()) # to int
|
|
|
|
divisor = int(divisor.max().item())
|
|
|
|
return math.ceil(x / divisor) * divisor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算最接近 x 且可以被除数 divisor 整除的整数
|
|
|
|
|
|
|
|
return math.ceil(x / divisor) * divisor
|
|
|
|
|
|
|
|
|
|
|
|
def check_img_size(imgsz, s=32, floor=0):
|
|
|
|
def check_img_size(imgsz, s=32, floor=0):
|
|
|
|
# Verify image size is a multiple of stride s in each dimension
|
|
|
|
# 验证图像大小在每个维度上是否都是 stride s 的倍数
|
|
|
|
if isinstance(imgsz, int): # integer i.e. img_size=640
|
|
|
|
if isinstance(imgsz, int):
|
|
|
|
|
|
|
|
# 整数类型,例如 img_size=640
|
|
|
|
new_size = max(make_divisible(imgsz, int(s)), floor)
|
|
|
|
new_size = max(make_divisible(imgsz, int(s)), floor)
|
|
|
|
else: # list i.e. img_size=[640, 480]
|
|
|
|
elif isinstance(imgsz, (list, tuple)) and len(imgsz) == 2:
|
|
|
|
imgsz = list(imgsz) # convert to list if tuple
|
|
|
|
# 列表或元组类型,例如 img_size=[640, 480]
|
|
|
|
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
|
|
|
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
raise TypeError("imgsz 应该是一个整数或包含两个元素的列表或元组。")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(new_size, int):
|
|
|
|
|
|
|
|
# 如果 new_size 是整数类型,则构造一个只有一个元素的列表
|
|
|
|
|
|
|
|
new_size = [new_size]
|
|
|
|
|
|
|
|
|
|
|
|
if new_size != imgsz:
|
|
|
|
if new_size != imgsz:
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
|
|
|
LOGGER.warning(f'警告⚠️ -- 图像大小 {imgsz} 必须是 {s} 的倍数,已更新为 {new_size}')
|
|
|
|
return new_size
|
|
|
|
return new_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#将边界框 (xyxy 格式) 限制在图像大小内
|
|
|
|
def clip_boxes(boxes, shape):
|
|
|
|
def clip_boxes(boxes, shape):
|
|
|
|
# Clip boxes (xyxy) to image shape (height, width)
|
|
|
|
if isinstance(boxes, torch.Tensor):
|
|
|
|
if isinstance(boxes, torch.Tensor): # faster individually
|
|
|
|
# 判断输入类型是否为 torch.Tensor,以提高处理速度
|
|
|
|
boxes[:, 0].clamp_(0, shape[1]) # x1
|
|
|
|
# 使用 torch.split 方法将 tensor 分割成 x_min、y_min、x_max、y_max 四个部分
|
|
|
|
boxes[:, 1].clamp_(0, shape[0]) # y1
|
|
|
|
x_min, y_min, x_max, y_max = torch.split(boxes, 1, dim=1)
|
|
|
|
boxes[:, 2].clamp_(0, shape[1]) # x2
|
|
|
|
# 使用 clamp_ 方法将 x_min、x_max、y_min、y_max 限制在给定形状范围内
|
|
|
|
boxes[:, 3].clamp_(0, shape[0]) # y2
|
|
|
|
x_min, x_max = x_min.clip(0, shape[1]), x_max.clip(0, shape[1])
|
|
|
|
else: # np.array (faster grouped)
|
|
|
|
y_min, y_max = y_min.clip(0, shape[0]), y_max.clip(0, shape[0])
|
|
|
|
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
|
|
|
# 使用 torch.cat 方法将四个部分拼接成新的 tensor
|
|
|
|
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
|
|
|
boxes = torch.cat([x_min, y_min, x_max, y_max], dim=1)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
# 对于 np.ndarray 类型,可以直接使用 numpy 的 vectorizing 方法进行限制范围
|
|
|
|
|
|
|
|
# 使用 clip 函数将 x_min、x_max、y_min、y_max 限制在给定形状范围内
|
|
|
|
|
|
|
|
boxes[:, [0, 2]] = np.clip(boxes[:, [0, 2]], a_min=0, a_max=shape[1]) # x1, x2
|
|
|
|
|
|
|
|
boxes[:, [1, 3]] = np.clip(boxes[:, [1, 3]], a_min=0, a_max=shape[0]) # y1, y2
|
|
|
|
|
|
|
|
return boxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#将边界框 (xyxy 格式) 从 img1_shape 缩放到 img0_shape
|
|
|
|
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
|
|
|
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
|
|
|
# Rescale boxes (xyxy) from img1_shape to img0_shape
|
|
|
|
# 检查输入参数的正确性
|
|
|
|
if ratio_pad is None: # calculate from img0_shape
|
|
|
|
if not isinstance(img1_shape, tuple) or len(img1_shape) != 2:
|
|
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
|
|
|
raise TypeError("img1_shape 应该是包含两个元素的元组,分别表示图像的高度和宽度。")
|
|
|
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
|
|
|
if not isinstance(img0_shape, tuple) or len(img0_shape) != 2:
|
|
|
|
|
|
|
|
raise TypeError("img0_shape 应该是包含两个元素的元组,分别表示图像的高度和宽度。")
|
|
|
|
|
|
|
|
if not isinstance(boxes, np.ndarray) or boxes.ndim != 2 or boxes.shape[1] != 4:
|
|
|
|
|
|
|
|
raise ValueError("boxes 应该是一个二维 numpy 数组,其形状为 [N, 4],其中 N 表示边界框数量。")
|
|
|
|
|
|
|
|
if ratio_pad is not None:
|
|
|
|
|
|
|
|
if not isinstance(ratio_pad, tuple) or len(ratio_pad) != 2:
|
|
|
|
|
|
|
|
raise ValueError("ratio_pad 应该是一个元组,包含两个元素,分别表示宽高比和填充大小。")
|
|
|
|
|
|
|
|
if not isinstance(ratio_pad[0], (int, float)):
|
|
|
|
|
|
|
|
raise TypeError("ratio_pad[0] 应该是一个整数或浮点数,用于表示缩放比例。")
|
|
|
|
|
|
|
|
if not isinstance(ratio_pad[1], tuple) or len(ratio_pad[1]) != 2:
|
|
|
|
|
|
|
|
raise ValueError("ratio_pad[1] 应该是一个包含两个元素的元组,分别表示宽度和高度填充大小。")
|
|
|
|
|
|
|
|
if not all(isinstance(i, (int, float)) for i in ratio_pad[1]):
|
|
|
|
|
|
|
|
raise TypeError("ratio_pad[1] 中的两个元素应该均为整数或浮点数,用于表示填充大小。")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 复制边界框数组,以避免修改原始数据
|
|
|
|
|
|
|
|
boxes = boxes.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算宽高比和填充大小
|
|
|
|
|
|
|
|
if ratio_pad is None:
|
|
|
|
|
|
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])
|
|
|
|
|
|
|
|
pad_w = (img1_shape[1] - img0_shape[1] * gain) / 2
|
|
|
|
|
|
|
|
pad_h = (img1_shape[0] - img0_shape[0] * gain) / 2
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
gain = ratio_pad[0][0]
|
|
|
|
gain = ratio_pad[0]
|
|
|
|
pad = ratio_pad[1]
|
|
|
|
pad_w, pad_h = ratio_pad[1]
|
|
|
|
|
|
|
|
|
|
|
|
boxes[:, [0, 2]] -= pad[0] # x padding
|
|
|
|
# 对边界框进行填充和缩放操作
|
|
|
|
boxes[:, [1, 3]] -= pad[1] # y padding
|
|
|
|
boxes[:, [0, 2]] -= pad_w
|
|
|
|
|
|
|
|
boxes[:, [1, 3]] -= pad_h
|
|
|
|
boxes[:, :4] /= gain
|
|
|
|
boxes[:, :4] /= gain
|
|
|
|
clip_boxes(boxes, img0_shape)
|
|
|
|
|
|
|
|
return boxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
|
|
|
|
|
|
|
# Resize and pad image while meeting stride-multiple constraints
|
|
|
|
|
|
|
|
shape = im.shape[:2] # current shape [height, width]
|
|
|
|
|
|
|
|
if isinstance(new_shape, int):
|
|
|
|
|
|
|
|
new_shape = (new_shape, new_shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Scale ratio (new / old)
|
|
|
|
# 对边界框的坐标进行限制范围,确保它们不会超出目标图像的大小
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
|
|
|
boxes = clip_boxes(boxes, img0_shape)
|
|
|
|
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
|
|
|
|
|
|
|
r = min(r, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Compute padding
|
|
|
|
return boxes
|
|
|
|
ratio = r, r # width, height ratios
|
|
|
|
|
|
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
|
|
|
|
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
|
|
|
|
|
|
|
if auto: # minimum rectangle
|
|
|
|
|
|
|
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
|
|
|
|
|
|
|
elif scaleFill: # stretch
|
|
|
|
|
|
|
|
dw, dh = 0.0, 0.0
|
|
|
|
|
|
|
|
new_unpad = (new_shape[1], new_shape[0])
|
|
|
|
|
|
|
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dw /= 2 # divide padding into 2 sides
|
|
|
|
|
|
|
|
dh /= 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if shape[::-1] != new_unpad: # resize
|
|
|
|
|
|
|
|
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
|
|
|
|
|
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
|
|
|
|
|
|
|
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
|
|
|
|
|
|
|
return im, ratio, (dw, dh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#调整图像大小并填充边框以适应模型输入尺寸
|
|
|
|
|
|
|
|
def letterbox(image, target_size=(640, 640), color=(114, 114, 114), auto=True, scale_fill=False, scale_up=True, stride=32):
|
|
|
|
|
|
|
|
# 计算新的图像比例
|
|
|
|
|
|
|
|
height, width = image.shape[:2]
|
|
|
|
|
|
|
|
target_h, target_w = target_size
|
|
|
|
|
|
|
|
scale = min(target_h / height, target_w / width)
|
|
|
|
|
|
|
|
if not scale_up:
|
|
|
|
|
|
|
|
scale = min(scale, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算填充和缩放后的宽度和高度
|
|
|
|
|
|
|
|
new_w = round(width * scale)
|
|
|
|
|
|
|
|
new_h = round(height * scale)
|
|
|
|
|
|
|
|
dw = target_w - new_w
|
|
|
|
|
|
|
|
dh = target_h - new_h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 如果需要,调整填充以便其尺寸是步幅的倍数
|
|
|
|
|
|
|
|
if auto:
|
|
|
|
|
|
|
|
dw = dw % stride
|
|
|
|
|
|
|
|
dh = dh % stride
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 如果需要,进行缩放和拉伸来填充目标形状
|
|
|
|
|
|
|
|
if scale_fill:
|
|
|
|
|
|
|
|
target_h = max(target_h, new_h)
|
|
|
|
|
|
|
|
target_w = max(target_w, new_w)
|
|
|
|
|
|
|
|
dw = (target_w - new_w) / 2
|
|
|
|
|
|
|
|
dh = (target_h - new_h) / 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 计算填充边框
|
|
|
|
|
|
|
|
top = round(dh - 0.1)
|
|
|
|
|
|
|
|
bottom = round(dh + 0.1)
|
|
|
|
|
|
|
|
left = round(dw - 0.1)
|
|
|
|
|
|
|
|
right = round(dw + 0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 进行填充并返回结果
|
|
|
|
|
|
|
|
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
|
|
image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
|
|
|
|
|
|
|
|
ratio = (new_w / width, new_h / height)
|
|
|
|
|
|
|
|
padding = (dw, dh)
|
|
|
|
|
|
|
|
return image, ratio, padding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#选择推理设备
|
|
|
|
def select_device(device='', batch_size=0, newline=True):
|
|
|
|
def select_device(device='', batch_size=0, newline=True):
|
|
|
|
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
|
|
|
|
|
|
|
s = f'torch-{torch.__version__} '
|
|
|
|
s = f'torch-{torch.__version__} '
|
|
|
|
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
|
|
|
|
|
|
|
|
|
|
|
# 转换 device 参数为字符串,'cuda:0' -> '0'
|
|
|
|
|
|
|
|
device = str(device).strip().lower().replace('cuda:', '').replace('none', '')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 如果请求的是 CPU 或 MPS 等非 GPU 设备
|
|
|
|
cpu = device == 'cpu'
|
|
|
|
cpu = device == 'cpu'
|
|
|
|
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
|
|
|
mps = device == 'mps'
|
|
|
|
if cpu or mps:
|
|
|
|
if cpu or mps:
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # 禁止使用 GPU 加速
|
|
|
|
elif device: # non-cpu device requested
|
|
|
|
elif device:
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
|
|
|
# 请求的是 GPU 设备
|
|
|
|
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # 设置 CUDA_VISIBLE_DEVICES 环境变量
|
|
|
|
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
|
|
|
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
|
|
|
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
|
|
|
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
|
|
|
|
|
|
|
|
|
|
|
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
|
|
|
# 选择计算设备
|
|
|
|
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
|
|
|
if not cpu and not mps and torch.cuda.is_available(): # 优先使用 GPU
|
|
|
|
n = len(devices) # device count
|
|
|
|
devices = device.split(',') if device else '0' # 可选设备编号列表,例如 '0, 1'
|
|
|
|
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
|
|
|
n = len(devices) # 设备数量
|
|
|
|
|
|
|
|
if n > 1 and batch_size > 0: # 确保 batch_size 是设备数量的倍数
|
|
|
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
|
|
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
|
|
|
space = ' ' * (len(s) + 1)
|
|
|
|
space = ' ' * (len(s) + 1)
|
|
|
|
for i, d in enumerate(devices):
|
|
|
|
for i, d in enumerate(devices):
|
|
|
|
p = torch.cuda.get_device_properties(i)
|
|
|
|
p = torch.cuda.get_device_properties(i)
|
|
|
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
|
|
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n"
|
|
|
|
arg = 'cuda:0'
|
|
|
|
arg = 'cuda:0'
|
|
|
|
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
|
|
|
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # 如果可用,优先使用 MPS
|
|
|
|
s += 'MPS\n'
|
|
|
|
s += 'MPS\n'
|
|
|
|
arg = 'mps'
|
|
|
|
arg = 'mps'
|
|
|
|
else: # revert to CPU
|
|
|
|
else: # 否则回退到 CPU
|
|
|
|
s += 'CPU\n'
|
|
|
|
s += 'CPU\n'
|
|
|
|
arg = 'cpu'
|
|
|
|
arg = 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 日志输出设备信息
|
|
|
|
if not newline:
|
|
|
|
if not newline:
|
|
|
|
s = s.rstrip()
|
|
|
|
s = s.rstrip()
|
|
|
|
LOGGER.info(s)
|
|
|
|
print(s)
|
|
|
|
return torch.device(arg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 返回所选设备的 PyTorch 设备对象
|
|
|
|
|
|
|
|
return torch.device(arg)
|
|
|
|
|
|
|
|
|
|
|
|
class YOLO:
|
|
|
|
class YOLO:
|
|
|
|
|
|
|
|
# 将参数初始化工作提取出来
|
|
|
|
def __init__(self,
|
|
|
|
def __init__(self,
|
|
|
|
path,
|
|
|
|
path,
|
|
|
|
device,
|
|
|
|
device,
|
|
|
@ -186,7 +283,7 @@ class YOLO:
|
|
|
|
dnn=False,
|
|
|
|
dnn=False,
|
|
|
|
agnostic_nms=False):
|
|
|
|
agnostic_nms=False):
|
|
|
|
self.half = half
|
|
|
|
self.half = half
|
|
|
|
self.device = torch.device('cuda:0')
|
|
|
|
self.device = torch.device(device)
|
|
|
|
self.conf = conf
|
|
|
|
self.conf = conf
|
|
|
|
self.iou_thres = iou
|
|
|
|
self.iou_thres = iou
|
|
|
|
self.agnostic_nms = agnostic_nms
|
|
|
|
self.agnostic_nms = agnostic_nms
|
|
|
@ -198,55 +295,43 @@ class YOLO:
|
|
|
|
self.img_size = check_img_size(imgsz, s=self.stride) # check image size
|
|
|
|
self.img_size = check_img_size(imgsz, s=self.stride) # check image size
|
|
|
|
if self.pt:
|
|
|
|
if self.pt:
|
|
|
|
model.model.half() if half else model.model.float()
|
|
|
|
model.model.half() if half else model.model.float()
|
|
|
|
if half:
|
|
|
|
dtype = torch.float16 if half else torch.float32
|
|
|
|
dtype = torch.float16
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
dtype = torch.float32
|
|
|
|
|
|
|
|
model(torch.zeros(1, 3, *self.img_size).to(device).type(dtype)) # warmup
|
|
|
|
model(torch.zeros(1, 3, *self.img_size).to(device).type(dtype)) # warmup
|
|
|
|
self.model = model
|
|
|
|
self.model = model
|
|
|
|
self.classes = classes
|
|
|
|
self.classes = classes
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
@torch.no_grad()
|
|
|
|
def predict(self, im):
|
|
|
|
def predict(self, im, window_name='UAV'):
|
|
|
|
# Load model
|
|
|
|
# Load model
|
|
|
|
src_shape = im.shape
|
|
|
|
|
|
|
|
model = self.model
|
|
|
|
model = self.model
|
|
|
|
# Half
|
|
|
|
# Half
|
|
|
|
half = self.half # half precision only supported by PyTorch on CUDA
|
|
|
|
half = self.half # half precision only supported by PyTorch on CUDA
|
|
|
|
device = self.device
|
|
|
|
device = self.device
|
|
|
|
|
|
|
|
|
|
|
|
img = letterbox(im, self.img_size, stride=self.stride, auto=True)[0]
|
|
|
|
# 图像预处理
|
|
|
|
# Convert
|
|
|
|
img = preprocess_image(im, self.img_size, self.stride)
|
|
|
|
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
|
|
|
|
|
|
img = np.ascontiguousarray(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
im = torch.from_numpy(img).to(device)
|
|
|
|
im = torch.from_numpy(img).to(device)
|
|
|
|
im = im.half() if half else im.float() # uint8 to fp16/32
|
|
|
|
im = im.half() if half else im.float()
|
|
|
|
im /= 255 # 0 - 255 to 0.0 - 1.0
|
|
|
|
im /= 255
|
|
|
|
|
|
|
|
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
im = im[None] # expand for batch dim
|
|
|
|
im = im[None]
|
|
|
|
# Inference
|
|
|
|
# Inference
|
|
|
|
pred = model(im)
|
|
|
|
pred = model(im)
|
|
|
|
|
|
|
|
|
|
|
|
# NMS
|
|
|
|
# NMS
|
|
|
|
pred = non_max_suppression(pred, self.conf, self.iou_thres, self.classes, self.agnostic_nms,
|
|
|
|
pred = non_max_suppression(pred, self.conf, self.iou_thres, self.classes, self.agnostic_nms,
|
|
|
|
max_det=self.max_det)
|
|
|
|
max_det=self.max_det)
|
|
|
|
# if not len(det):
|
|
|
|
# 新建 annotator 对象并在循环内不断更新
|
|
|
|
# return [], [], []
|
|
|
|
annotator = Annotator(im.squeeze(0).copy(), line_width=2)
|
|
|
|
# det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im.shape).round()
|
|
|
|
|
|
|
|
for i, det in enumerate(pred):
|
|
|
|
for i, det in enumerate(pred):
|
|
|
|
# 画框
|
|
|
|
|
|
|
|
annotator = Annotator(img, line_width=2)
|
|
|
|
|
|
|
|
if len(det):
|
|
|
|
if len(det):
|
|
|
|
target_list = []
|
|
|
|
target_list = []
|
|
|
|
result = "fire"
|
|
|
|
result = "fire"
|
|
|
|
# 将转换后的图片画框结果转换成原图上的结果
|
|
|
|
|
|
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
|
|
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], img.shape).round()
|
|
|
|
for *xyxy, conf, cls in reversed(det): # 处理推理出来每个目标的信息
|
|
|
|
for *xyxy, conf, cls in reversed(det):
|
|
|
|
# 将xyxy(左上角+右下角)格式转为xywh(中心点+宽长)格式,并除上w,h做归一化,转化为列表再保存
|
|
|
|
|
|
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() # normalized xywh
|
|
|
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() # normalized xywh
|
|
|
|
# if names[int(cls)]=='':
|
|
|
|
|
|
|
|
# result = "fire"
|
|
|
|
|
|
|
|
# type = "Alarming"
|
|
|
|
|
|
|
|
annotator.box_label(xyxy, label=f'[{YOLO.names[int(cls)]} {conf:.2f}]',
|
|
|
|
annotator.box_label(xyxy, label=f'[{YOLO.names[int(cls)]} {conf:.2f}]',
|
|
|
|
color=(34, 139, 34),
|
|
|
|
color=(34, 139, 34),
|
|
|
|
txt_color=(0, 191, 255))
|
|
|
|
txt_color=(0, 191, 255))
|
|
|
@ -254,58 +339,175 @@ class YOLO:
|
|
|
|
print('\033[0;31;40m' + f' 发现火情 ' + '\033[0m')
|
|
|
|
print('\033[0;31;40m' + f' 发现火情 ' + '\033[0m')
|
|
|
|
|
|
|
|
|
|
|
|
im0 = annotator.result()
|
|
|
|
im0 = annotator.result()
|
|
|
|
cv2.imshow('UAV', im0)
|
|
|
|
cv2.imshow(window_name, im0)
|
|
|
|
cv2.waitKey(1)
|
|
|
|
cv2.waitKey(1)
|
|
|
|
|
|
|
|
|
|
|
|
return target_list, im0
|
|
|
|
return target_list, im0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 将图像预处理部分提取成函数
|
|
|
|
|
|
|
|
def preprocess_image(im, img_size, stride):
|
|
|
|
|
|
|
|
src_shape = im.shape
|
|
|
|
|
|
|
|
# 修改到 1x3x416x416
|
|
|
|
|
|
|
|
img = letterbox(im, img_size, stride=stride, auto=True)[0]
|
|
|
|
|
|
|
|
# Convert
|
|
|
|
|
|
|
|
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
|
|
|
|
|
|
|
# 获取 416x416 大小的图片
|
|
|
|
|
|
|
|
img = np.ascontiguousarray(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PID:
|
|
|
|
class PID:
|
|
|
|
def __init__(self, p, i, d, set_value):
|
|
|
|
def __init__(self, p, i, d, set_value, min_out=None, max_out=None):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
初始化 PID 控制器参数
|
|
|
|
|
|
|
|
:param p: 比例系数
|
|
|
|
|
|
|
|
:param i: 积分系数
|
|
|
|
|
|
|
|
:param d: 微分系数
|
|
|
|
|
|
|
|
:param set_value: 目标值
|
|
|
|
|
|
|
|
:param min_out: 输出最小值(可选)
|
|
|
|
|
|
|
|
:param max_out: 输出最大值(可选)
|
|
|
|
|
|
|
|
"""
|
|
|
|
self.kp = p
|
|
|
|
self.kp = p
|
|
|
|
self.ki = i
|
|
|
|
self.ki = i
|
|
|
|
self.kd = d
|
|
|
|
self.kd = d
|
|
|
|
self.setValue = set_value # 目标值
|
|
|
|
self.set_value = set_value
|
|
|
|
self.lastErr = 0 # 上一次误差
|
|
|
|
self.min_out = min_out
|
|
|
|
self.preLastErr = 0 # 临时存误差
|
|
|
|
self.max_out = max_out
|
|
|
|
self.errSum = 0 # 误差总和
|
|
|
|
self.last_err = 0 # 上一次误差
|
|
|
|
|
|
|
|
self.err_sum = 0 # 误差总和
|
|
|
|
|
|
|
|
self.cur_time = time.monotonic() # 当前时间
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 增量式PID
|
|
|
|
|
|
|
|
def pid_increment(self, cur_value):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
实现增量式 PID 控制
|
|
|
|
|
|
|
|
:param cur_value: 当前值
|
|
|
|
|
|
|
|
:return: PID 输出
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
err = self.set_value - cur_value
|
|
|
|
|
|
|
|
self.err_sum += err
|
|
|
|
|
|
|
|
diff_err = err - self.last_err
|
|
|
|
|
|
|
|
self.last_err = err
|
|
|
|
|
|
|
|
p_out = self.kp * err
|
|
|
|
|
|
|
|
i_out = self.ki * self.err_sum
|
|
|
|
|
|
|
|
d_out = self.kd * diff_err
|
|
|
|
|
|
|
|
out_pid = p_out + i_out + d_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 对输出进行限幅操作
|
|
|
|
|
|
|
|
if self.min_out is not None and out_pid < self.min_out:
|
|
|
|
|
|
|
|
out_pid = self.min_out
|
|
|
|
|
|
|
|
if self.max_out is not None and out_pid > self.max_out:
|
|
|
|
|
|
|
|
out_pid = self.max_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return out_pid
|
|
|
|
|
|
|
|
|
|
|
|
# 位置式PID
|
|
|
|
# 位置式PID
|
|
|
|
def pidPosition(self, curValue):
|
|
|
|
def pid_position(self, cur_value):
|
|
|
|
err = self.setValue - curValue
|
|
|
|
"""
|
|
|
|
dErr = err - self.lastErr
|
|
|
|
实现位置式 PID 控制
|
|
|
|
self.preLastErr = self.lastErr
|
|
|
|
:param cur_value: 当前值
|
|
|
|
self.lastErr = err
|
|
|
|
:return: PID 输出
|
|
|
|
self.errSum += err
|
|
|
|
"""
|
|
|
|
outPID = self.kp * err + (self.ki * self.errSum) + (self.kd * dErr)
|
|
|
|
err = self.set_value - cur_value
|
|
|
|
return outPID
|
|
|
|
d_err = (err - self.last_err) / (time.monotonic() - self.cur_time) # 计算微分项
|
|
|
|
|
|
|
|
self.err_sum += err
|
|
|
|
|
|
|
|
out_pid = self.kp * err + self.ki * self.err_sum + self.kd * d_err
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 对输出进行限幅操作
|
|
|
|
|
|
|
|
if self.min_out is not None and out_pid < self.min_out:
|
|
|
|
|
|
|
|
out_pid = self.min_out
|
|
|
|
|
|
|
|
if self.max_out is not None and out_pid > self.max_out:
|
|
|
|
|
|
|
|
out_pid = self.max_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.last_err = err
|
|
|
|
|
|
|
|
self.cur_time = time.monotonic()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return out_pid
|
|
|
|
|
|
|
|
|
|
|
|
# #设置时延
|
|
|
|
|
|
|
|
def delayMsecond(t): # t的单位0.1ms
|
|
|
|
|
|
|
|
start, end = 0, 0
|
|
|
|
|
|
|
|
start = time.perf_counter() * pow(10, 7)
|
|
|
|
|
|
|
|
while (end - start < t * pow(10, 3)):
|
|
|
|
|
|
|
|
end = time.perf_counter() * pow(10, 7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# #设置时延
|
|
|
|
|
|
|
|
def delay_milliseconds(t):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
延时函数,参数 t 表示延时毫秒数
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
start = time.perf_counter()
|
|
|
|
|
|
|
|
while True:
|
|
|
|
|
|
|
|
end = time.perf_counter()
|
|
|
|
|
|
|
|
if (end - start) * 1000 >= t:
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
# 连接摄像头类
|
|
|
|
# 连接摄像头类
|
|
|
|
class Capture:
|
|
|
|
class Capture:
|
|
|
|
def __init__(self,
|
|
|
|
def __init__(self, url='http://admin:admin@192.168.8.126:8081'):
|
|
|
|
ip="http://admin:admin@192.168.8.126:8081"):
|
|
|
|
self.url = url
|
|
|
|
self.ip = ip
|
|
|
|
self.cap = None
|
|
|
|
self.cap = cv2.VideoCapture(self.ip)
|
|
|
|
|
|
|
|
|
|
|
|
def open(self):
|
|
|
|
|
|
|
|
if self.cap is None:
|
|
|
|
|
|
|
|
self.cap = cv2.VideoCapture(self.url)
|
|
|
|
|
|
|
|
if not self.cap.isOpened():
|
|
|
|
|
|
|
|
raise Exception(f"Cannot open video stream from {self.url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def close(self):
|
|
|
|
|
|
|
|
if self.cap is not None:
|
|
|
|
|
|
|
|
self.cap.release()
|
|
|
|
|
|
|
|
self.cap = None
|
|
|
|
|
|
|
|
|
|
|
|
def read(self):
|
|
|
|
def read(self):
|
|
|
|
|
|
|
|
if self.cap is None:
|
|
|
|
|
|
|
|
self.open()
|
|
|
|
|
|
|
|
|
|
|
|
ret, img = self.cap.read()
|
|
|
|
ret, img = self.cap.read()
|
|
|
|
|
|
|
|
if not ret:
|
|
|
|
|
|
|
|
# 发生错误时尝试重连一次
|
|
|
|
|
|
|
|
self.close()
|
|
|
|
|
|
|
|
self.open()
|
|
|
|
|
|
|
|
ret, img = self.cap.read()
|
|
|
|
|
|
|
|
if not ret:
|
|
|
|
|
|
|
|
raise Exception("Failed to read video frame")
|
|
|
|
|
|
|
|
|
|
|
|
return img
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __del__(self):
|
|
|
|
|
|
|
|
self.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#图像色彩通道转换
|
|
|
|
|
|
|
|
def my_cvtColor(img, code):
|
|
|
|
|
|
|
|
choice = {
|
|
|
|
|
|
|
|
0: cv2.COLOR_BGRA2BGR,
|
|
|
|
|
|
|
|
1: cv2.COLOR_BGR2GRAY,
|
|
|
|
|
|
|
|
2: cv2.COLOR_BGRA2RGB,
|
|
|
|
|
|
|
|
3: cv2.COLOR_BGRA2RGBA
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not isinstance(img, np.ndarray):
|
|
|
|
|
|
|
|
raise TypeError("The input image is not a numpy array")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if code not in choice.keys():
|
|
|
|
|
|
|
|
raise ValueError("Invalid color conversion code")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 先判断原图是否为 BGRA/RGBA 格式,在进行颜色转换
|
|
|
|
|
|
|
|
if img.ndim == 3 and img.shape[2] == 4:
|
|
|
|
|
|
|
|
img = cv2.cvtColor(img, choice[code])
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
|
|
|
|
|
|
|
|
img = cv2.cvtColor(img, choice[code])
|
|
|
|
|
|
|
|
|
|
|
|
def my_cvtColo(img, code):
|
|
|
|
|
|
|
|
choice = ["COLOR_BGRA2BGR", "cv2.COLOR_BGR2GRAY", "COLOR_BGRA2RGB", "COLOR_BGRA2RGBA"]
|
|
|
|
|
|
|
|
img = cv2.cvtColor(img,choice[code])
|
|
|
|
|
|
|
|
return img
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#检查数据正确性
|
|
|
|
|
|
|
|
def check_data(arr):
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
iter(arr) # 检查是否可迭代
|
|
|
|
|
|
|
|
if len(arr) == 0: # 检查长度是否为0
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
except TypeError: # 不可迭代的情况
|
|
|
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
def main():
|
|
|
|
# cap = cv2.VideoCapture("http://admin:admin@192.168.8.126:8081")
|
|
|
|
# cap = cv2.VideoCapture("http://admin:admin@192.168.8.126:8081")
|
|
|
|
# print("图像加载成功")
|
|
|
|
# print("图像加载成功")
|
|
|
@ -322,20 +524,31 @@ def main():
|
|
|
|
img = cap.read()
|
|
|
|
img = cap.read()
|
|
|
|
img = np.rot90(img, 0)
|
|
|
|
img = np.rot90(img, 0)
|
|
|
|
img = np.array(img)
|
|
|
|
img = np.array(img)
|
|
|
|
img = my_cvtColo(img,1)
|
|
|
|
img = my_cvtColor(img,1)
|
|
|
|
target, im0 = predict.predict(img)
|
|
|
|
target, im0 = predict.predict(img)
|
|
|
|
img_b64 = base64.b64encode(im0).decode('utf-8')
|
|
|
|
img_b64 = base64.b64encode(im0).decode('utf-8')
|
|
|
|
print(img_b64)
|
|
|
|
if check_data(target):
|
|
|
|
|
|
|
|
Fire_centX = target[0][0]
|
|
|
|
|
|
|
|
Fire_centY = target[0][1]
|
|
|
|
|
|
|
|
Fire_W = target[0][2]
|
|
|
|
|
|
|
|
Fire_H = target[0][3]
|
|
|
|
|
|
|
|
# print(img_b64)
|
|
|
|
data = {
|
|
|
|
data = {
|
|
|
|
"img": img_b64,
|
|
|
|
"img": img_b64,
|
|
|
|
"type": "Alarming",
|
|
|
|
"type": "Alarming",
|
|
|
|
"fire_flag": 'fire'
|
|
|
|
"fire_flag": "fire",
|
|
|
|
|
|
|
|
"cent_x": Fire_centX,
|
|
|
|
|
|
|
|
"cent_y": Fire_centY,
|
|
|
|
|
|
|
|
"length": Fire_W,
|
|
|
|
|
|
|
|
"width": Fire_H
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
json_data = json.dumps(data).encode('utf-8')
|
|
|
|
json_data = json.dumps(data).encode('utf-8')
|
|
|
|
cs.send(json_data)
|
|
|
|
cs.send(json_data)
|
|
|
|
delayMsecond(100)
|
|
|
|
delay_milliseconds(100)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
if __name__ == "__main__":
|
|
|
|
IP = int(input("请输入服务器地址:"))
|
|
|
|
IP = int(input("请输入服务器地址:"))
|
|
|
|