|
|
import cv2
|
|
|
import os
|
|
|
import sys
|
|
|
import numpy as np
|
|
|
from createfold import CreateFolder
|
|
|
|
|
|
def CatchPICFromVideo (window_name, camera_idx, catch_pic_num, path_name, usr_name):
|
|
|
|
|
|
#camera_idx代表摄像头编号,0即为系统默认
|
|
|
|
|
|
#检查输入路径是否存在——不存在就创建
|
|
|
|
|
|
CreateFolder(path_name)
|
|
|
|
|
|
cv2.namedWindow(window_name)
|
|
|
#cap = cv2.VideoCapture('./Qianyaxuan/Qianyaxuan.mp4')
|
|
|
cap = cv2.VideoCapture('./Wangwenhai/Wangwenhai.mp4')
|
|
|
# 设置分辨率
|
|
|
#cap = cv2.VideoCapture(camera_idx)
|
|
|
cap.set(3, 1920)
|
|
|
|
|
|
cap.set(4, 1080)
|
|
|
|
|
|
# 告诉OpenCV使用人脸识别分类器
|
|
|
|
|
|
classfier = cv2.CascadeClassifier("./haarcascade_frontalface_alt2.xml")
|
|
|
|
|
|
#记录已拍摄的照片数目
|
|
|
|
|
|
num = 0
|
|
|
|
|
|
while True:
|
|
|
|
|
|
ok, frame = cap.read() # 读取一帧数据
|
|
|
|
|
|
if not ok:
|
|
|
break
|
|
|
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
#将当前桢图像转换成灰度图像
|
|
|
|
|
|
# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
|
|
|
|
|
|
faceRects = classfier.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=2, minSize=(32, 32))
|
|
|
|
|
|
for (x, y, w, h) in faceRects:
|
|
|
#单独框出每一张人脸
|
|
|
|
|
|
#将当前帧保存为图片
|
|
|
|
|
|
img_name = '%s/%d.jpg' % ("./FaceData/"+usr_name, num)
|
|
|
|
|
|
#保存灰度人脸图
|
|
|
|
|
|
cv2.imwrite(img_name, gray[y:y+h, x:x+w])
|
|
|
|
|
|
num += 1
|
|
|
|
|
|
#画出矩形框的时候稍微比识别的脸大一圈
|
|
|
|
|
|
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10),(0, 255, 0),1)
|
|
|
|
|
|
#显示当前捕捉到了多少人脸图片
|
|
|
|
|
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
|
|
|
cv2.putText(frame, 'num:%d' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 1)
|
|
|
|
|
|
# 超过指定最大保存数量结束程序
|
|
|
|
|
|
cv2.imshow(window_name, frame)
|
|
|
if num >= catch_pic_num:
|
|
|
break
|
|
|
#按键盘‘Q’中断采集
|
|
|
if cv2.waitKey(5) & 0xFF == ord('q'):
|
|
|
break
|
|
|
# 释放摄像头并销毁所有窗口
|
|
|
print("拍摄完成,训练中......")
|
|
|
cap.release()
|
|
|
cv2.destroyAllWindows()
|
|
|
|
|
|
|
|
|
|
|
|
|