1 #1

Closed
p7jnhfs82 wants to merge 0 commits from master into main

164
.gitignore vendored

@ -1,164 +0,0 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
CIFAR10
model
logs
.idea
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

@ -1,62 +0,0 @@
import torch
from torch import nn
from torch.nn import functional as F
class ResBlock(nn.Module):
def __init__(self, ch_in, ch_out, stride=2):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1) # ! (h-3+2)/2 + 1 = h/2 图像尺寸减半
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1) # ! h-3+2*1+1=h 图像尺寸没变化
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride), # ! 这句话是针对原图像尺寸写的要进行element wise add
# ! 因此图像尺寸也必须减半,(h-1)/2+1=h/2 图像尺寸减半
nn.BatchNorm2d(ch_out)
)
def forward(self, x):
out = x
x = torch.relu(self.bn1(self.conv1(x)))
x = self.bn2(self.conv2(x))
# shortcut
# ! element wise add [b,ch_in,h,w] [b,ch_out,h,w] 必须当ch_in = ch_out时才能进行相加
out = x + self.extra(out) # todo self.extra强制把输出通道变成一致
return out
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), # ! 图像尺寸不变
nn.BatchNorm2d(64)
)
# 4个ResBlock
# [b,64,h,w] --> [b,128,h,w]
self.block1 = ResBlock(64, 128)
# [b,128,h,w] --> [b,256,h,w]
self.block2 = ResBlock(128, 256)
# [b,256,h,w] --> [b,512,h,w]
self.block3 = ResBlock(256, 512)
# [b,512,h,w] --> [b,512,h,w]
self.block4 = ResBlock(512, 512)
self.outlayer = nn.Linear(512, 10)
def forward(self, x):
x = torch.relu(self.conv1(x))
# [b,64,h,w] --> [b,1024,h,w]
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
# print("after conv:",x.shape)
# [b,512,h,w] --> [b,512,1,1]
x = F.adaptive_avg_pool2d(x, [1, 1])
# flatten
x = x.view(x.shape[0], -1)
x = self.outlayer(x)
return x

@ -1,44 +0,0 @@
from torch import nn
cfg = {'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']}
class QCQ(nn.Module):
def __init__(self, vgg):
super(QCQ, self).__init__()
self.features = self._make_layers(vgg)
self.dense = nn.Sequential(
nn.Linear(512, 4096),
nn.ReLU(inplace=True),
nn.Dropout(0.4),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(0.4),
)
self.classifier = nn.Linear(4096, 10)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.dense(out)
out = self.classifier(out)
return out
def _make_layers(self, vgg):
layers = []
in_channels = 3
for x in vgg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)

@ -1,10 +1,2 @@
# CIFAR10
CIFAR10学习
我的环境:
python 3.6.13
torch 1.10.2
cuda 11.3
torchvision 0.11.3
pillow 8.4.0
tensorboard 2.10.1

@ -1,97 +0,0 @@
import os
import PIL
import torchvision.transforms
from PIL import Image
from QCQ_VGG16 import *
from QCQ_ResNet18 import *
CIFAR10_class = ['airplane','automobile','brid','cat','deer','dog','frog','horse','ship','truck']
vgg = [96, 96, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']
def readImage(img_path='img/test.png'):
img = Image.open(img_path).convert('RGB')
transform= torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])
img = transform(img)
print(img.shape)
img = torch.reshape(img, (1, 3, 32, 32))
return img
def DrawImageTxt(imageFile, targetImageFile, txtnum):
# 设置字体大小
font = PIL.ImageFont.truetype('img/abc.ttf', 50)
# 打开文件
im = Image.open(imageFile)
# 字体坐标
draw = PIL.ImageDraw.Draw(im)
draw.text((0, 0), txtnum, (255, 255, 0), font=font)
# 保存
im.save(targetImageFile)
# 关闭
im.close()
if __name__=='__main__':
print("通过训练好的模型识别十种事物:飞机,汽车,鸟,猫,鹿,狗,青蛙,马,船,卡车")
device = 'cuda'
models=[]
i=1
for root, dirs, files in os.walk('model'):
for file in files:
if file.__contains__('.pth'):
file_path=root+'/'+file
models.append(file_path)
print(f'{i}.'+file)
i+=1
if models.__len__()==0:
print('model文件夹中没有pth模型文件')
else:
select = int(input('选择一个模型\n'))
model_path=models[select-1]
if model_path.__contains__('VGG16'):
qcq_test=QCQ(vgg)
elif model_path.__contains__('RestNet18'):
qcq_test=ResNet18()
else:
print('选择的模型名称中既不包含"VGG16",也不包含"RestNet18"')
qcq_test.load_state_dict(torch.load(model_path, map_location=torch.device(device)))
imgs=[]
i=1
for root, dirs, files in os.walk('img'):
for file in files:
if file.__contains__('.png') or file.__contains__('.jpg'):
if not file.__contains__('pre'):
file_path = root + '/' + file
imgs.append(file_path)
print(f'{i}.' + file)
i+=1
if imgs.__len__() == 0:
print('img文件夹中没有图片')
else:
select = int(input('选择一个测试图片,\n'))
image_path = imgs[select-1]
image_name,image_type = image_path.split('.')
targetImageFile=image_name+'_pre.png'
img=readImage(image_path)
qcq_test.eval()
with torch.no_grad():
output = qcq_test(img)
pre=output.argmax(1)
txtnum = CIFAR10_class[pre.item()]
DrawImageTxt(image_path, targetImageFile, txtnum)
print(output)
print(pre)
print(txtnum)
Image.open(targetImageFile).show()

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 555 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 273 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 299 KiB

@ -1,124 +0,0 @@
import os.path
import torchvision.datasets
from torch.utils.tensorboard import SummaryWriter
from QCQ_VGG16 import *
from QCQ_ResNet18 import *
from torch.utils.data import DataLoader
# 训练数据集
train_data = torchvision.datasets.CIFAR10("CIFAR10/CIFAR10_train", train=True,
transform=torchvision.transforms.ToTensor(), download=True)
# 测试数据集
test_data = torchvision.datasets.CIFAR10("CIFAR10/CIFAR10_test", train=False,
transform=torchvision.transforms.ToTensor(), download=True)
# 数据集长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# dataloader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 定义运行设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 创建神经网络模型
vgg = [96, 96, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']
select=input("选择模型:\n"
"1.VGG16\n"
"2.RestNet18\n")
if select=='1':
qcq = QCQ(vgg)
model_name='VGG16'
learning_rate = 1e-2
optimizer = torch.optim.SGD(qcq.parameters(), lr=learning_rate,weight_decay=5e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.4, last_epoch=-1)
# 训练轮数
epoch = 10
else:
qcq = ResNet18()
model_name = 'RestNet18'
# 优化器,学习率
learning_rate = 1e-3
optimizer = torch.optim.Adam(qcq.parameters(), lr=learning_rate)
# 训练轮数
epoch = 50
qcq = qcq.to(device)
# 创建损失函数
loss_fun = nn.CrossEntropyLoss().to(device)
loss_fun = loss_fun.to(device)
# 设置训练网络的一些参数
# 训练次数
total_train_step = 0
# 测试次数
total_test_step = 0
# 添加tensorboard
if not os.path.exists('logs'):
os.mkdir('logs')
writer = SummaryWriter('logs')
for i in range(epoch):
print("--------第%5d 轮训练开始--------" % (i + 1))
# 训练步骤开始
qcq.train()
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = qcq(imgs)
loss = loss_fun(outputs, targets)
# 模型优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print('训练次数:%-8d,Loss%f' % (total_train_step, loss.item()))
writer.add_scalar('train_loss', loss.item(), total_train_step)
# 测试步骤开始
qcq.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = qcq(imgs)
loss = loss_fun(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print('整体测试集上test_loss%f' % total_test_loss)
print('整体测试集上正确率:%f' % (total_accuracy / test_data_size))
writer.add_scalar('test_loss', total_test_loss, total_test_step)
writer.add_scalar('test_accuracy_rate', total_accuracy / test_data_size, total_test_step)
if select=='1': scheduler.step()
total_test_step += 1
# 模型每轮保存
if not os.path.exists('model'):
os.mkdir('model')
torch.save(qcq.state_dict(), 'model/'+model_name+'_%d_epoch.pth' % (i+1))
print("模型自动保存成功")
writer.close()
Loading…
Cancel
Save