parent
719474fde4
commit
68a400df8a
@ -0,0 +1 @@
|
||||
v1.001
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,370 @@
|
||||
# autograder.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# imports from python standard library
|
||||
import py_compile
|
||||
import pprint
|
||||
import grading
|
||||
import imp
|
||||
import optparse
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import projectParams
|
||||
import random
|
||||
random.seed(0)
|
||||
try:
|
||||
from pacman import GameState
|
||||
except:
|
||||
pass
|
||||
|
||||
# register arguments and set default values
|
||||
|
||||
|
||||
def readCommand(argv):
|
||||
parser = optparse.OptionParser(
|
||||
description='Run public tests on student code')
|
||||
parser.set_defaults(generateSolutions=False, edxOutput=False, gsOutput=False,
|
||||
muteOutput=False, printTestCase=False, noGraphics=False)
|
||||
parser.add_option('--test-directory',
|
||||
dest='testRoot',
|
||||
default='test_cases',
|
||||
help='Root test directory which contains subdirectories corresponding to each question')
|
||||
parser.add_option('--student-code',
|
||||
dest='studentCode',
|
||||
default=projectParams.STUDENT_CODE_DEFAULT,
|
||||
help='comma separated list of student code files')
|
||||
parser.add_option('--code-directory',
|
||||
dest='codeRoot',
|
||||
default="",
|
||||
help='Root directory containing the student and testClass code')
|
||||
parser.add_option('--test-case-code',
|
||||
dest='testCaseCode',
|
||||
default=projectParams.PROJECT_TEST_CLASSES,
|
||||
help='class containing testClass classes for this project')
|
||||
parser.add_option('--generate-solutions',
|
||||
dest='generateSolutions',
|
||||
action='store_true',
|
||||
help='Write solutions generated to .solution file')
|
||||
parser.add_option('--edx-output',
|
||||
dest='edxOutput',
|
||||
action='store_true',
|
||||
help='Generate edX output files')
|
||||
parser.add_option('--gradescope-output',
|
||||
dest='gsOutput',
|
||||
action='store_true',
|
||||
help='Generate GradeScope output files')
|
||||
parser.add_option('--mute',
|
||||
dest='muteOutput',
|
||||
action='store_true',
|
||||
help='Mute output from executing tests')
|
||||
parser.add_option('--print-tests', '-p',
|
||||
dest='printTestCase',
|
||||
action='store_true',
|
||||
help='Print each test case before running them.')
|
||||
parser.add_option('--test', '-t',
|
||||
dest='runTest',
|
||||
default=None,
|
||||
help='Run one particular test. Relative to test root.')
|
||||
parser.add_option('--question', '-q',
|
||||
dest='gradeQuestion',
|
||||
default=None,
|
||||
help='Grade one particular question.')
|
||||
parser.add_option('--no-graphics',
|
||||
dest='noGraphics',
|
||||
action='store_true',
|
||||
help='No graphics display for pacman games.')
|
||||
(options, args) = parser.parse_args(argv)
|
||||
return options
|
||||
|
||||
|
||||
# confirm we should author solution files
|
||||
def confirmGenerate():
|
||||
print('WARNING: this action will overwrite any solution files.')
|
||||
print('Are you sure you want to proceed? (yes/no)')
|
||||
while True:
|
||||
ans = sys.stdin.readline().strip()
|
||||
if ans == 'yes':
|
||||
break
|
||||
elif ans == 'no':
|
||||
sys.exit(0)
|
||||
else:
|
||||
print('please answer either "yes" or "no"')
|
||||
|
||||
|
||||
# TODO: Fix this so that it tracebacks work correctly
|
||||
# Looking at source of the traceback module, presuming it works
|
||||
# the same as the intepreters, it uses co_filename. This is,
|
||||
# however, a readonly attribute.
|
||||
def setModuleName(module, filename):
|
||||
functionType = type(confirmGenerate)
|
||||
classType = type(optparse.Option)
|
||||
|
||||
for i in dir(module):
|
||||
o = getattr(module, i)
|
||||
if hasattr(o, '__file__'):
|
||||
continue
|
||||
|
||||
if type(o) == functionType:
|
||||
setattr(o, '__file__', filename)
|
||||
elif type(o) == classType:
|
||||
setattr(o, '__file__', filename)
|
||||
# TODO: assign member __file__'s?
|
||||
#print(i, type(o))
|
||||
|
||||
|
||||
#from cStringIO import StringIO
|
||||
|
||||
def loadModuleString(moduleSource):
|
||||
# Below broken, imp doesn't believe its being passed a file:
|
||||
# ValueError: load_module arg#2 should be a file or None
|
||||
#
|
||||
#f = StringIO(moduleCodeDict[k])
|
||||
#tmp = imp.load_module(k, f, k, (".py", "r", imp.PY_SOURCE))
|
||||
tmp = imp.new_module(k)
|
||||
exec(moduleCodeDict[k] in tmp.__dict__)
|
||||
setModuleName(tmp, k)
|
||||
return tmp
|
||||
|
||||
|
||||
def loadModuleFile(moduleName, filePath):
|
||||
with open(filePath, 'r') as f:
|
||||
return imp.load_module(moduleName, f, "%s.py" % moduleName, (".py", "r", imp.PY_SOURCE))
|
||||
|
||||
|
||||
def readFile(path, root=""):
|
||||
"Read file from disk at specified path and return as string"
|
||||
with open(os.path.join(root, path), 'r') as handle:
|
||||
return handle.read()
|
||||
|
||||
|
||||
#######################################################################
|
||||
# Error Hint Map
|
||||
#######################################################################
|
||||
|
||||
# TODO: use these
|
||||
ERROR_HINT_MAP = {
|
||||
'q1': {
|
||||
"<type 'exceptions.IndexError'>": """
|
||||
We noticed that your project threw an IndexError on q1.
|
||||
While many things may cause this, it may have been from
|
||||
assuming a certain number of successors from a state space
|
||||
or assuming a certain number of actions available from a given
|
||||
state. Try making your code more general (no hardcoded indices)
|
||||
and submit again!
|
||||
"""
|
||||
},
|
||||
'q3': {
|
||||
"<type 'exceptions.AttributeError'>": """
|
||||
We noticed that your project threw an AttributeError on q3.
|
||||
While many things may cause this, it may have been from assuming
|
||||
a certain size or structure to the state space. For example, if you have
|
||||
a line of code assuming that the state is (x, y) and we run your code
|
||||
on a state space with (x, y, z), this error could be thrown. Try
|
||||
making your code more general and submit again!
|
||||
|
||||
"""
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def splitStrings(d):
|
||||
d2 = dict(d)
|
||||
for k in d:
|
||||
if k[0:2] == "__":
|
||||
del d2[k]
|
||||
continue
|
||||
if d2[k].find("\n") >= 0:
|
||||
d2[k] = d2[k].split("\n")
|
||||
return d2
|
||||
|
||||
|
||||
def printTest(testDict, solutionDict):
|
||||
pp = pprint.PrettyPrinter(indent=4)
|
||||
print("Test case:")
|
||||
for line in testDict["__raw_lines__"]:
|
||||
print(" |", line)
|
||||
print("Solution:")
|
||||
for line in solutionDict["__raw_lines__"]:
|
||||
print(" |", line)
|
||||
|
||||
|
||||
def runTest(testName, moduleDict, printTestCase=False, display=None):
|
||||
import testParser
|
||||
import testClasses
|
||||
for module in moduleDict:
|
||||
setattr(sys.modules[__name__], module, moduleDict[module])
|
||||
|
||||
testDict = testParser.TestParser(testName + ".test").parse()
|
||||
solutionDict = testParser.TestParser(testName + ".solution").parse()
|
||||
test_out_file = os.path.join('%s.test_output' % testName)
|
||||
testDict['test_out_file'] = test_out_file
|
||||
testClass = getattr(projectTestClasses, testDict['class'])
|
||||
|
||||
questionClass = getattr(testClasses, 'Question')
|
||||
question = questionClass({'max_points': 0}, display)
|
||||
testCase = testClass(question, testDict)
|
||||
|
||||
if printTestCase:
|
||||
printTest(testDict, solutionDict)
|
||||
|
||||
# This is a fragile hack to create a stub grades object
|
||||
grades = grading.Grades(projectParams.PROJECT_NAME, [(None, 0)])
|
||||
testCase.execute(grades, moduleDict, solutionDict)
|
||||
|
||||
|
||||
# returns all the tests you need to run in order to run question
|
||||
def getDepends(testParser, testRoot, question):
|
||||
allDeps = [question]
|
||||
questionDict = testParser.TestParser(
|
||||
os.path.join(testRoot, question, 'CONFIG')).parse()
|
||||
if 'depends' in questionDict:
|
||||
depends = questionDict['depends'].split()
|
||||
for d in depends:
|
||||
# run dependencies first
|
||||
allDeps = getDepends(testParser, testRoot, d) + allDeps
|
||||
return allDeps
|
||||
|
||||
# get list of questions to grade
|
||||
|
||||
|
||||
def getTestSubdirs(testParser, testRoot, questionToGrade):
|
||||
problemDict = testParser.TestParser(
|
||||
os.path.join(testRoot, 'CONFIG')).parse()
|
||||
if questionToGrade != None:
|
||||
questions = getDepends(testParser, testRoot, questionToGrade)
|
||||
if len(questions) > 1:
|
||||
print('Note: due to dependencies, the following tests will be run: %s' %
|
||||
' '.join(questions))
|
||||
return questions
|
||||
if 'order' in problemDict:
|
||||
return problemDict['order'].split()
|
||||
return sorted(os.listdir(testRoot))
|
||||
|
||||
|
||||
# evaluate student code
|
||||
def evaluate(generateSolutions, testRoot, moduleDict, exceptionMap=ERROR_HINT_MAP,
|
||||
edxOutput=False, muteOutput=False, gsOutput=False,
|
||||
printTestCase=False, questionToGrade=None, display=None):
|
||||
# imports of testbench code. note that the testClasses import must follow
|
||||
# the import of student code due to dependencies
|
||||
import testParser
|
||||
import testClasses
|
||||
for module in moduleDict:
|
||||
setattr(sys.modules[__name__], module, moduleDict[module])
|
||||
|
||||
questions = []
|
||||
questionDicts = {}
|
||||
test_subdirs = getTestSubdirs(testParser, testRoot, questionToGrade)
|
||||
for q in test_subdirs:
|
||||
subdir_path = os.path.join(testRoot, q)
|
||||
if not os.path.isdir(subdir_path) or q[0] == '.':
|
||||
continue
|
||||
|
||||
# create a question object
|
||||
questionDict = testParser.TestParser(
|
||||
os.path.join(subdir_path, 'CONFIG')).parse()
|
||||
questionClass = getattr(testClasses, questionDict['class'])
|
||||
question = questionClass(questionDict, display)
|
||||
questionDicts[q] = questionDict
|
||||
|
||||
# load test cases into question
|
||||
tests = filter(lambda t: re.match(
|
||||
'[^#~.].*\.test\Z', t), os.listdir(subdir_path))
|
||||
tests = map(lambda t: re.match('(.*)\.test\Z', t).group(1), tests)
|
||||
for t in sorted(tests):
|
||||
test_file = os.path.join(subdir_path, '%s.test' % t)
|
||||
solution_file = os.path.join(subdir_path, '%s.solution' % t)
|
||||
test_out_file = os.path.join(subdir_path, '%s.test_output' % t)
|
||||
testDict = testParser.TestParser(test_file).parse()
|
||||
if testDict.get("disabled", "false").lower() == "true":
|
||||
continue
|
||||
testDict['test_out_file'] = test_out_file
|
||||
testClass = getattr(projectTestClasses, testDict['class'])
|
||||
testCase = testClass(question, testDict)
|
||||
|
||||
def makefun(testCase, solution_file):
|
||||
if generateSolutions:
|
||||
# write solution file to disk
|
||||
return lambda grades: testCase.writeSolution(moduleDict, solution_file)
|
||||
else:
|
||||
# read in solution dictionary and pass as an argument
|
||||
testDict = testParser.TestParser(test_file).parse()
|
||||
solutionDict = testParser.TestParser(solution_file).parse()
|
||||
if printTestCase:
|
||||
return lambda grades: printTest(testDict, solutionDict) or testCase.execute(grades, moduleDict, solutionDict)
|
||||
else:
|
||||
return lambda grades: testCase.execute(grades, moduleDict, solutionDict)
|
||||
question.addTestCase(testCase, makefun(testCase, solution_file))
|
||||
|
||||
# Note extra function is necessary for scoping reasons
|
||||
def makefun(question):
|
||||
return lambda grades: question.execute(grades)
|
||||
setattr(sys.modules[__name__], q, makefun(question))
|
||||
questions.append((q, question.getMaxPoints()))
|
||||
|
||||
grades = grading.Grades(projectParams.PROJECT_NAME, questions,
|
||||
gsOutput=gsOutput, edxOutput=edxOutput, muteOutput=muteOutput)
|
||||
if questionToGrade == None:
|
||||
for q in questionDicts:
|
||||
for prereq in questionDicts[q].get('depends', '').split():
|
||||
grades.addPrereq(q, prereq)
|
||||
|
||||
grades.grade(sys.modules[__name__], bonusPic=projectParams.BONUS_PIC)
|
||||
return grades.points
|
||||
|
||||
|
||||
def getDisplay(graphicsByDefault, options=None):
|
||||
graphics = graphicsByDefault
|
||||
if options is not None and options.noGraphics:
|
||||
graphics = False
|
||||
if graphics:
|
||||
try:
|
||||
import graphicsDisplay
|
||||
return graphicsDisplay.PacmanGraphics(1, frameTime=.05)
|
||||
except ImportError:
|
||||
pass
|
||||
import textDisplay
|
||||
return textDisplay.NullGraphics()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
options = readCommand(sys.argv)
|
||||
if options.generateSolutions:
|
||||
confirmGenerate()
|
||||
codePaths = options.studentCode.split(',')
|
||||
# moduleCodeDict = {}
|
||||
# for cp in codePaths:
|
||||
# moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
|
||||
# moduleCodeDict[moduleName] = readFile(cp, root=options.codeRoot)
|
||||
# moduleCodeDict['projectTestClasses'] = readFile(options.testCaseCode, root=options.codeRoot)
|
||||
# moduleDict = loadModuleDict(moduleCodeDict)
|
||||
|
||||
moduleDict = {}
|
||||
for cp in codePaths:
|
||||
moduleName = re.match('.*?([^/]*)\.py', cp).group(1)
|
||||
moduleDict[moduleName] = loadModuleFile(
|
||||
moduleName, os.path.join(options.codeRoot, cp))
|
||||
moduleName = re.match('.*?([^/]*)\.py', options.testCaseCode).group(1)
|
||||
moduleDict['projectTestClasses'] = loadModuleFile(
|
||||
moduleName, os.path.join(options.codeRoot, options.testCaseCode))
|
||||
|
||||
if options.runTest != None:
|
||||
runTest(options.runTest, moduleDict, printTestCase=options.printTestCase,
|
||||
display=getDisplay(True, options))
|
||||
else:
|
||||
evaluate(options.generateSolutions, options.testRoot, moduleDict,
|
||||
gsOutput=options.gsOutput,
|
||||
edxOutput=options.edxOutput, muteOutput=options.muteOutput, printTestCase=options.printTestCase,
|
||||
questionToGrade=options.gradeQuestion, display=getDisplay(options.gradeQuestion != None, options))
|
@ -0,0 +1,21 @@
|
||||
python pacman.py
|
||||
python pacman.py --layout testMaze --pacman GoWestAgent
|
||||
python pacman.py --layout tinyMaze --pacman GoWestAgent
|
||||
python pacman.py -h
|
||||
python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch
|
||||
python pacman.py -l tinyMaze -p SearchAgent
|
||||
python pacman.py -l mediumMaze -p SearchAgent
|
||||
python pacman.py -l bigMaze -z .5 -p SearchAgent
|
||||
python pacman.py -l mediumMaze -p SearchAgent -a fn=bfs
|
||||
python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5
|
||||
python eightpuzzle.py
|
||||
python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs
|
||||
python pacman.py -l mediumDottedMaze -p StayEastSearchAgent
|
||||
python pacman.py -l mediumScaryMaze -p StayWestSearchAgent
|
||||
python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic
|
||||
python pacman.py -l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
|
||||
python pacman.py -l mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem
|
||||
python pacman.py -l mediumCorners -p AStarCornersAgent -z 0.5
|
||||
python pacman.py -l testSearch -p AStarFoodSearchAgent
|
||||
python pacman.py -l trickySearch -p AStarFoodSearchAgent
|
||||
python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5
|
@ -0,0 +1,281 @@
|
||||
# eightpuzzle.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import search
|
||||
import random
|
||||
|
||||
# Module Classes
|
||||
|
||||
class EightPuzzleState:
|
||||
"""
|
||||
The Eight Puzzle is described in the course textbook on
|
||||
page 64.
|
||||
|
||||
This class defines the mechanics of the puzzle itself. The
|
||||
task of recasting this puzzle as a search problem is left to
|
||||
the EightPuzzleSearchProblem class.
|
||||
"""
|
||||
|
||||
def __init__( self, numbers ):
|
||||
"""
|
||||
Constructs a new eight puzzle from an ordering of numbers.
|
||||
|
||||
numbers: a list of integers from 0 to 8 representing an
|
||||
instance of the eight puzzle. 0 represents the blank
|
||||
space. Thus, the list
|
||||
|
||||
[1, 0, 2, 3, 4, 5, 6, 7, 8]
|
||||
|
||||
represents the eight puzzle:
|
||||
-------------
|
||||
| 1 | | 2 |
|
||||
-------------
|
||||
| 3 | 4 | 5 |
|
||||
-------------
|
||||
| 6 | 7 | 8 |
|
||||
------------
|
||||
|
||||
The configuration of the puzzle is stored in a 2-dimensional
|
||||
list (a list of lists) 'cells'.
|
||||
"""
|
||||
self.cells = []
|
||||
numbers = numbers[:] # Make a copy so as not to cause side-effects.
|
||||
numbers.reverse()
|
||||
for row in range( 3 ):
|
||||
self.cells.append( [] )
|
||||
for col in range( 3 ):
|
||||
self.cells[row].append( numbers.pop() )
|
||||
if self.cells[row][col] == 0:
|
||||
self.blankLocation = row, col
|
||||
|
||||
def isGoal( self ):
|
||||
"""
|
||||
Checks to see if the puzzle is in its goal state.
|
||||
|
||||
-------------
|
||||
| | 1 | 2 |
|
||||
-------------
|
||||
| 3 | 4 | 5 |
|
||||
-------------
|
||||
| 6 | 7 | 8 |
|
||||
-------------
|
||||
|
||||
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).isGoal()
|
||||
True
|
||||
|
||||
>>> EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).isGoal()
|
||||
False
|
||||
"""
|
||||
current = 0
|
||||
for row in range( 3 ):
|
||||
for col in range( 3 ):
|
||||
if current != self.cells[row][col]:
|
||||
return False
|
||||
current += 1
|
||||
return True
|
||||
|
||||
def legalMoves( self ):
|
||||
"""
|
||||
Returns a list of legal moves from the current state.
|
||||
|
||||
Moves consist of moving the blank space up, down, left or right.
|
||||
These are encoded as 'up', 'down', 'left' and 'right' respectively.
|
||||
|
||||
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]).legalMoves()
|
||||
['down', 'right']
|
||||
"""
|
||||
moves = []
|
||||
row, col = self.blankLocation
|
||||
if(row != 0):
|
||||
moves.append('up')
|
||||
if(row != 2):
|
||||
moves.append('down')
|
||||
if(col != 0):
|
||||
moves.append('left')
|
||||
if(col != 2):
|
||||
moves.append('right')
|
||||
return moves
|
||||
|
||||
def result(self, move):
|
||||
"""
|
||||
Returns a new eightPuzzle with the current state and blankLocation
|
||||
updated based on the provided move.
|
||||
|
||||
The move should be a string drawn from a list returned by legalMoves.
|
||||
Illegal moves will raise an exception, which may be an array bounds
|
||||
exception.
|
||||
|
||||
NOTE: This function *does not* change the current object. Instead,
|
||||
it returns a new object.
|
||||
"""
|
||||
row, col = self.blankLocation
|
||||
if(move == 'up'):
|
||||
newrow = row - 1
|
||||
newcol = col
|
||||
elif(move == 'down'):
|
||||
newrow = row + 1
|
||||
newcol = col
|
||||
elif(move == 'left'):
|
||||
newrow = row
|
||||
newcol = col - 1
|
||||
elif(move == 'right'):
|
||||
newrow = row
|
||||
newcol = col + 1
|
||||
else:
|
||||
raise "Illegal Move"
|
||||
|
||||
# Create a copy of the current eightPuzzle
|
||||
newPuzzle = EightPuzzleState([0, 0, 0, 0, 0, 0, 0, 0, 0])
|
||||
newPuzzle.cells = [values[:] for values in self.cells]
|
||||
# And update it to reflect the move
|
||||
newPuzzle.cells[row][col] = self.cells[newrow][newcol]
|
||||
newPuzzle.cells[newrow][newcol] = self.cells[row][col]
|
||||
newPuzzle.blankLocation = newrow, newcol
|
||||
|
||||
return newPuzzle
|
||||
|
||||
# Utilities for comparison and display
|
||||
def __eq__(self, other):
|
||||
"""
|
||||
Overloads '==' such that two eightPuzzles with the same configuration
|
||||
are equal.
|
||||
|
||||
>>> EightPuzzleState([0, 1, 2, 3, 4, 5, 6, 7, 8]) == \
|
||||
EightPuzzleState([1, 0, 2, 3, 4, 5, 6, 7, 8]).result('left')
|
||||
True
|
||||
"""
|
||||
for row in range( 3 ):
|
||||
if self.cells[row] != other.cells[row]:
|
||||
return False
|
||||
return True
|
||||
|
||||
def __hash__(self):
|
||||
return hash(str(self.cells))
|
||||
|
||||
def __getAsciiString(self):
|
||||
"""
|
||||
Returns a display string for the maze
|
||||
"""
|
||||
lines = []
|
||||
horizontalLine = ('-' * (13))
|
||||
lines.append(horizontalLine)
|
||||
for row in self.cells:
|
||||
rowLine = '|'
|
||||
for col in row:
|
||||
if col == 0:
|
||||
col = ' '
|
||||
rowLine = rowLine + ' ' + col.__str__() + ' |'
|
||||
lines.append(rowLine)
|
||||
lines.append(horizontalLine)
|
||||
return '\n'.join(lines)
|
||||
|
||||
def __str__(self):
|
||||
return self.__getAsciiString()
|
||||
|
||||
# TODO: Implement The methods in this class
|
||||
|
||||
class EightPuzzleSearchProblem(search.SearchProblem):
|
||||
"""
|
||||
Implementation of a SearchProblem for the Eight Puzzle domain
|
||||
|
||||
Each state is represented by an instance of an eightPuzzle.
|
||||
"""
|
||||
def __init__(self,puzzle):
|
||||
"Creates a new EightPuzzleSearchProblem which stores search information."
|
||||
self.puzzle = puzzle
|
||||
|
||||
def getStartState(self):
|
||||
return puzzle
|
||||
|
||||
def isGoalState(self,state):
|
||||
return state.isGoal()
|
||||
|
||||
def getSuccessors(self,state):
|
||||
"""
|
||||
Returns list of (successor, action, stepCost) pairs where
|
||||
each succesor is either left, right, up, or down
|
||||
from the original state and the cost is 1.0 for each
|
||||
"""
|
||||
succ = []
|
||||
for a in state.legalMoves():
|
||||
succ.append((state.result(a), a, 1))
|
||||
return succ
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
actions: A list of actions to take
|
||||
|
||||
This method returns the total cost of a particular sequence of actions. The sequence must
|
||||
be composed of legal moves
|
||||
"""
|
||||
return len(actions)
|
||||
|
||||
EIGHT_PUZZLE_DATA = [[1, 0, 2, 3, 4, 5, 6, 7, 8],
|
||||
[1, 7, 8, 2, 3, 4, 5, 6, 0],
|
||||
[4, 3, 2, 7, 0, 5, 1, 6, 8],
|
||||
[5, 1, 3, 4, 0, 2, 6, 7, 8],
|
||||
[1, 2, 5, 7, 6, 8, 0, 4, 3],
|
||||
[0, 3, 1, 6, 8, 2, 7, 5, 4]]
|
||||
|
||||
def loadEightPuzzle(puzzleNumber):
|
||||
"""
|
||||
puzzleNumber: The number of the eight puzzle to load.
|
||||
|
||||
Returns an eight puzzle object generated from one of the
|
||||
provided puzzles in EIGHT_PUZZLE_DATA.
|
||||
|
||||
puzzleNumber can range from 0 to 5.
|
||||
|
||||
>>> print(loadEightPuzzle(0))
|
||||
-------------
|
||||
| 1 | | 2 |
|
||||
-------------
|
||||
| 3 | 4 | 5 |
|
||||
-------------
|
||||
| 6 | 7 | 8 |
|
||||
-------------
|
||||
"""
|
||||
return EightPuzzleState(EIGHT_PUZZLE_DATA[puzzleNumber])
|
||||
|
||||
def createRandomEightPuzzle(moves=100):
|
||||
"""
|
||||
moves: number of random moves to apply
|
||||
|
||||
Creates a random eight puzzle by applying
|
||||
a series of 'moves' random moves to a solved
|
||||
puzzle.
|
||||
"""
|
||||
puzzle = EightPuzzleState([0,1,2,3,4,5,6,7,8])
|
||||
for i in range(moves):
|
||||
# Execute a random legal move
|
||||
puzzle = puzzle.result(random.sample(puzzle.legalMoves(), 1)[0])
|
||||
return puzzle
|
||||
|
||||
if __name__ == '__main__':
|
||||
puzzle = createRandomEightPuzzle(25)
|
||||
print('A random puzzle:')
|
||||
print(puzzle)
|
||||
|
||||
problem = EightPuzzleSearchProblem(puzzle)
|
||||
path = search.breadthFirstSearch(problem)
|
||||
print('BFS found a path of %d moves: %s' % (len(path), str(path)))
|
||||
curr = puzzle
|
||||
i = 1
|
||||
for a in path:
|
||||
curr = curr.result(a)
|
||||
print('After %d move%s: %s' % (i, ("", "s")[i>1], a))
|
||||
print(curr)
|
||||
|
||||
input("Press return for the next state...") # wait for key stroke
|
||||
i += 1
|
@ -0,0 +1,729 @@
|
||||
# game.py
|
||||
# -------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# game.py
|
||||
# -------
|
||||
# Licensing Information: Please do not distribute or publish solutions to this
|
||||
# project. You are free to use and extend these projects for educational
|
||||
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
|
||||
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
|
||||
|
||||
from util import *
|
||||
import time, os
|
||||
import traceback
|
||||
import sys
|
||||
|
||||
#######################
|
||||
# Parts worth reading #
|
||||
#######################
|
||||
|
||||
class Agent:
|
||||
"""
|
||||
An agent must define a getAction method, but may also define the
|
||||
following methods which will be called if they exist:
|
||||
|
||||
def registerInitialState(self, state): # inspects the starting state
|
||||
"""
|
||||
def __init__(self, index=0):
|
||||
self.index = index
|
||||
|
||||
def getAction(self, state):
|
||||
"""
|
||||
The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
|
||||
must return an action from Directions.{North, South, East, West, Stop}
|
||||
"""
|
||||
raiseNotDefined()
|
||||
|
||||
class Directions:
|
||||
NORTH = 'North'
|
||||
SOUTH = 'South'
|
||||
EAST = 'East'
|
||||
WEST = 'West'
|
||||
STOP = 'Stop'
|
||||
|
||||
LEFT = {NORTH: WEST,
|
||||
SOUTH: EAST,
|
||||
EAST: NORTH,
|
||||
WEST: SOUTH,
|
||||
STOP: STOP}
|
||||
|
||||
RIGHT = dict([(y,x) for x, y in LEFT.items()])
|
||||
|
||||
REVERSE = {NORTH: SOUTH,
|
||||
SOUTH: NORTH,
|
||||
EAST: WEST,
|
||||
WEST: EAST,
|
||||
STOP: STOP}
|
||||
|
||||
class Configuration:
|
||||
"""
|
||||
A Configuration holds the (x,y) coordinate of a character, along with its
|
||||
traveling direction.
|
||||
|
||||
The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases
|
||||
horizontally and y increases vertically. Therefore, north is the direction of increasing y, or (0,1).
|
||||
"""
|
||||
|
||||
def __init__(self, pos, direction):
|
||||
self.pos = pos
|
||||
self.direction = direction
|
||||
|
||||
def getPosition(self):
|
||||
return (self.pos)
|
||||
|
||||
def getDirection(self):
|
||||
return self.direction
|
||||
|
||||
def isInteger(self):
|
||||
x,y = self.pos
|
||||
return x == int(x) and y == int(y)
|
||||
|
||||
def __eq__(self, other):
|
||||
if other == None: return False
|
||||
return (self.pos == other.pos and self.direction == other.direction)
|
||||
|
||||
def __hash__(self):
|
||||
x = hash(self.pos)
|
||||
y = hash(self.direction)
|
||||
return hash(x + 13 * y)
|
||||
|
||||
def __str__(self):
|
||||
return "(x,y)="+str(self.pos)+", "+str(self.direction)
|
||||
|
||||
def generateSuccessor(self, vector):
|
||||
"""
|
||||
Generates a new configuration reached by translating the current
|
||||
configuration by the action vector. This is a low-level call and does
|
||||
not attempt to respect the legality of the movement.
|
||||
|
||||
Actions are movement vectors.
|
||||
"""
|
||||
x, y= self.pos
|
||||
dx, dy = vector
|
||||
direction = Actions.vectorToDirection(vector)
|
||||
if direction == Directions.STOP:
|
||||
direction = self.direction # There is no stop direction
|
||||
return Configuration((x + dx, y+dy), direction)
|
||||
|
||||
class AgentState:
|
||||
"""
|
||||
AgentStates hold the state of an agent (configuration, speed, scared, etc).
|
||||
"""
|
||||
|
||||
def __init__( self, startConfiguration, isPacman ):
|
||||
self.start = startConfiguration
|
||||
self.configuration = startConfiguration
|
||||
self.isPacman = isPacman
|
||||
self.scaredTimer = 0
|
||||
self.numCarrying = 0
|
||||
self.numReturned = 0
|
||||
|
||||
def __str__( self ):
|
||||
if self.isPacman:
|
||||
return "Pacman: " + str( self.configuration )
|
||||
else:
|
||||
return "Ghost: " + str( self.configuration )
|
||||
|
||||
def __eq__( self, other ):
|
||||
if other == None:
|
||||
return False
|
||||
return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer
|
||||
|
||||
def __hash__(self):
|
||||
return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))
|
||||
|
||||
def copy( self ):
|
||||
state = AgentState( self.start, self.isPacman )
|
||||
state.configuration = self.configuration
|
||||
state.scaredTimer = self.scaredTimer
|
||||
state.numCarrying = self.numCarrying
|
||||
state.numReturned = self.numReturned
|
||||
return state
|
||||
|
||||
def getPosition(self):
|
||||
if self.configuration == None: return None
|
||||
return self.configuration.getPosition()
|
||||
|
||||
def getDirection(self):
|
||||
return self.configuration.getDirection()
|
||||
|
||||
class Grid:
|
||||
"""
|
||||
A 2-dimensional array of objects backed by a list of lists. Data is accessed
|
||||
via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
|
||||
y vertical and the origin (0,0) in the bottom left corner.
|
||||
|
||||
The __str__ method constructs an output that is oriented like a pacman board.
|
||||
"""
|
||||
def __init__(self, width, height, initialValue=False, bitRepresentation=None):
|
||||
if initialValue not in [False, True]: raise Exception('Grids can only contain booleans')
|
||||
self.CELLS_PER_INT = 30
|
||||
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.data = [[initialValue for y in range(height)] for x in range(width)]
|
||||
if bitRepresentation:
|
||||
self._unpackBits(bitRepresentation)
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self.data[i]
|
||||
|
||||
def __setitem__(self, key, item):
|
||||
self.data[key] = item
|
||||
|
||||
def __str__(self):
|
||||
out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)]
|
||||
out.reverse()
|
||||
return '\n'.join([''.join(x) for x in out])
|
||||
|
||||
def __eq__(self, other):
|
||||
if other == None: return False
|
||||
return self.data == other.data
|
||||
|
||||
def __hash__(self):
|
||||
# return hash(str(self))
|
||||
base = 1
|
||||
h = 0
|
||||
for l in self.data:
|
||||
for i in l:
|
||||
if i:
|
||||
h += base
|
||||
base *= 2
|
||||
return hash(h)
|
||||
|
||||
def copy(self):
|
||||
g = Grid(self.width, self.height)
|
||||
g.data = [x[:] for x in self.data]
|
||||
return g
|
||||
|
||||
def deepCopy(self):
|
||||
return self.copy()
|
||||
|
||||
def shallowCopy(self):
|
||||
g = Grid(self.width, self.height)
|
||||
g.data = self.data
|
||||
return g
|
||||
|
||||
def count(self, item =True ):
|
||||
return sum([x.count(item) for x in self.data])
|
||||
|
||||
def asList(self, key = True):
|
||||
list = []
|
||||
for x in range(self.width):
|
||||
for y in range(self.height):
|
||||
if self[x][y] == key: list.append( (x,y) )
|
||||
return list
|
||||
|
||||
def packBits(self):
|
||||
"""
|
||||
Returns an efficient int list representation
|
||||
|
||||
(width, height, bitPackedInts...)
|
||||
"""
|
||||
bits = [self.width, self.height]
|
||||
currentInt = 0
|
||||
for i in range(self.height * self.width):
|
||||
bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1
|
||||
x, y = self._cellIndexToPosition(i)
|
||||
if self[x][y]:
|
||||
currentInt += 2 ** bit
|
||||
if (i + 1) % self.CELLS_PER_INT == 0:
|
||||
bits.append(currentInt)
|
||||
currentInt = 0
|
||||
bits.append(currentInt)
|
||||
return tuple(bits)
|
||||
|
||||
def _cellIndexToPosition(self, index):
|
||||
x = index // self.height
|
||||
y = index % self.height
|
||||
return x, y
|
||||
|
||||
def _unpackBits(self, bits):
|
||||
"""
|
||||
Fills in data from a bit-level representation
|
||||
"""
|
||||
cell = 0
|
||||
for packed in bits:
|
||||
for bit in self._unpackInt(packed, self.CELLS_PER_INT):
|
||||
if cell == self.width * self.height: break
|
||||
x, y = self._cellIndexToPosition(cell)
|
||||
self[x][y] = bit
|
||||
cell += 1
|
||||
|
||||
def _unpackInt(self, packed, size):
|
||||
bools = []
|
||||
if packed < 0: raise ValueError("must be a positive integer")
|
||||
for i in range(size):
|
||||
n = 2 ** (self.CELLS_PER_INT - i - 1)
|
||||
if packed >= n:
|
||||
bools.append(True)
|
||||
packed -= n
|
||||
else:
|
||||
bools.append(False)
|
||||
return bools
|
||||
|
||||
def reconstituteGrid(bitRep):
|
||||
if type(bitRep) is not type((1,2)):
|
||||
return bitRep
|
||||
width, height = bitRep[:2]
|
||||
return Grid(width, height, bitRepresentation= bitRep[2:])
|
||||
|
||||
####################################
|
||||
# Parts you shouldn't have to read #
|
||||
####################################
|
||||
|
||||
class Actions:
|
||||
"""
|
||||
A collection of static methods for manipulating move actions.
|
||||
"""
|
||||
# Directions
|
||||
_directions = {Directions.NORTH: (0, 1),
|
||||
Directions.SOUTH: (0, -1),
|
||||
Directions.EAST: (1, 0),
|
||||
Directions.WEST: (-1, 0),
|
||||
Directions.STOP: (0, 0)}
|
||||
|
||||
_directionsAsList = _directions.items()
|
||||
|
||||
TOLERANCE = .001
|
||||
|
||||
def reverseDirection(action):
|
||||
if action == Directions.NORTH:
|
||||
return Directions.SOUTH
|
||||
if action == Directions.SOUTH:
|
||||
return Directions.NORTH
|
||||
if action == Directions.EAST:
|
||||
return Directions.WEST
|
||||
if action == Directions.WEST:
|
||||
return Directions.EAST
|
||||
return action
|
||||
reverseDirection = staticmethod(reverseDirection)
|
||||
|
||||
def vectorToDirection(vector):
|
||||
dx, dy = vector
|
||||
if dy > 0:
|
||||
return Directions.NORTH
|
||||
if dy < 0:
|
||||
return Directions.SOUTH
|
||||
if dx < 0:
|
||||
return Directions.WEST
|
||||
if dx > 0:
|
||||
return Directions.EAST
|
||||
return Directions.STOP
|
||||
vectorToDirection = staticmethod(vectorToDirection)
|
||||
|
||||
def directionToVector(direction, speed = 1.0):
|
||||
dx, dy = Actions._directions[direction]
|
||||
return (dx * speed, dy * speed)
|
||||
directionToVector = staticmethod(directionToVector)
|
||||
|
||||
def getPossibleActions(config, walls):
|
||||
possible = []
|
||||
x, y = config.pos
|
||||
x_int, y_int = int(x + 0.5), int(y + 0.5)
|
||||
|
||||
# In between grid points, all agents must continue straight
|
||||
if (abs(x - x_int) + abs(y - y_int) > Actions.TOLERANCE):
|
||||
return [config.getDirection()]
|
||||
|
||||
for dir, vec in Actions._directionsAsList:
|
||||
dx, dy = vec
|
||||
next_y = y_int + dy
|
||||
next_x = x_int + dx
|
||||
if not walls[next_x][next_y]: possible.append(dir)
|
||||
|
||||
return possible
|
||||
|
||||
getPossibleActions = staticmethod(getPossibleActions)
|
||||
|
||||
def getLegalNeighbors(position, walls):
|
||||
x,y = position
|
||||
x_int, y_int = int(x + 0.5), int(y + 0.5)
|
||||
neighbors = []
|
||||
for dir, vec in Actions._directionsAsList:
|
||||
dx, dy = vec
|
||||
next_x = x_int + dx
|
||||
if next_x < 0 or next_x == walls.width: continue
|
||||
next_y = y_int + dy
|
||||
if next_y < 0 or next_y == walls.height: continue
|
||||
if not walls[next_x][next_y]: neighbors.append((next_x, next_y))
|
||||
return neighbors
|
||||
getLegalNeighbors = staticmethod(getLegalNeighbors)
|
||||
|
||||
def getSuccessor(position, action):
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = position
|
||||
return (x + dx, y + dy)
|
||||
getSuccessor = staticmethod(getSuccessor)
|
||||
|
||||
class GameStateData:
|
||||
"""
|
||||
|
||||
"""
|
||||
def __init__( self, prevState = None ):
|
||||
"""
|
||||
Generates a new data packet by copying information from its predecessor.
|
||||
"""
|
||||
if prevState != None:
|
||||
self.food = prevState.food.shallowCopy()
|
||||
self.capsules = prevState.capsules[:]
|
||||
self.agentStates = self.copyAgentStates( prevState.agentStates )
|
||||
self.layout = prevState.layout
|
||||
self._eaten = prevState._eaten
|
||||
self.score = prevState.score
|
||||
|
||||
self._foodEaten = None
|
||||
self._foodAdded = None
|
||||
self._capsuleEaten = None
|
||||
self._agentMoved = None
|
||||
self._lose = False
|
||||
self._win = False
|
||||
self.scoreChange = 0
|
||||
|
||||
def deepCopy( self ):
|
||||
state = GameStateData( self )
|
||||
state.food = self.food.deepCopy()
|
||||
state.layout = self.layout.deepCopy()
|
||||
state._agentMoved = self._agentMoved
|
||||
state._foodEaten = self._foodEaten
|
||||
state._foodAdded = self._foodAdded
|
||||
state._capsuleEaten = self._capsuleEaten
|
||||
return state
|
||||
|
||||
def copyAgentStates( self, agentStates ):
|
||||
copiedStates = []
|
||||
for agentState in agentStates:
|
||||
copiedStates.append( agentState.copy() )
|
||||
return copiedStates
|
||||
|
||||
def __eq__( self, other ):
|
||||
"""
|
||||
Allows two states to be compared.
|
||||
"""
|
||||
if other == None: return False
|
||||
# TODO Check for type of other
|
||||
if not self.agentStates == other.agentStates: return False
|
||||
if not self.food == other.food: return False
|
||||
if not self.capsules == other.capsules: return False
|
||||
if not self.score == other.score: return False
|
||||
return True
|
||||
|
||||
def __hash__( self ):
|
||||
"""
|
||||
Allows states to be keys of dictionaries.
|
||||
"""
|
||||
for i, state in enumerate( self.agentStates ):
|
||||
try:
|
||||
int(hash(state))
|
||||
except TypeError as e:
|
||||
print(e)
|
||||
#hash(state)
|
||||
return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 )
|
||||
|
||||
def __str__( self ):
|
||||
width, height = self.layout.width, self.layout.height
|
||||
map = Grid(width, height)
|
||||
if type(self.food) == type((1,2)):
|
||||
self.food = reconstituteGrid(self.food)
|
||||
for x in range(width):
|
||||
for y in range(height):
|
||||
food, walls = self.food, self.layout.walls
|
||||
map[x][y] = self._foodWallStr(food[x][y], walls[x][y])
|
||||
|
||||
for agentState in self.agentStates:
|
||||
if agentState == None: continue
|
||||
if agentState.configuration == None: continue
|
||||
x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )]
|
||||
agent_dir = agentState.configuration.direction
|
||||
if agentState.isPacman:
|
||||
map[x][y] = self._pacStr( agent_dir )
|
||||
else:
|
||||
map[x][y] = self._ghostStr( agent_dir )
|
||||
|
||||
for x, y in self.capsules:
|
||||
map[x][y] = 'o'
|
||||
|
||||
return str(map) + ("\nScore: %d\n" % self.score)
|
||||
|
||||
def _foodWallStr( self, hasFood, hasWall ):
|
||||
if hasFood:
|
||||
return '.'
|
||||
elif hasWall:
|
||||
return '%'
|
||||
else:
|
||||
return ' '
|
||||
|
||||
def _pacStr( self, dir ):
|
||||
if dir == Directions.NORTH:
|
||||
return 'v'
|
||||
if dir == Directions.SOUTH:
|
||||
return '^'
|
||||
if dir == Directions.WEST:
|
||||
return '>'
|
||||
return '<'
|
||||
|
||||
def _ghostStr( self, dir ):
|
||||
return 'G'
|
||||
if dir == Directions.NORTH:
|
||||
return 'M'
|
||||
if dir == Directions.SOUTH:
|
||||
return 'W'
|
||||
if dir == Directions.WEST:
|
||||
return '3'
|
||||
return 'E'
|
||||
|
||||
def initialize( self, layout, numGhostAgents ):
|
||||
"""
|
||||
Creates an initial game state from a layout array (see layout.py).
|
||||
"""
|
||||
self.food = layout.food.copy()
|
||||
#self.capsules = []
|
||||
self.capsules = layout.capsules[:]
|
||||
self.layout = layout
|
||||
self.score = 0
|
||||
self.scoreChange = 0
|
||||
|
||||
self.agentStates = []
|
||||
numGhosts = 0
|
||||
for isPacman, pos in layout.agentPositions:
|
||||
if not isPacman:
|
||||
if numGhosts == numGhostAgents: continue # Max ghosts reached already
|
||||
else: numGhosts += 1
|
||||
self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) )
|
||||
self._eaten = [False for a in self.agentStates]
|
||||
|
||||
try:
|
||||
import boinc
|
||||
_BOINC_ENABLED = True
|
||||
except:
|
||||
_BOINC_ENABLED = False
|
||||
|
||||
class Game:
|
||||
"""
|
||||
The Game manages the control flow, soliciting actions from agents.
|
||||
"""
|
||||
|
||||
def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ):
|
||||
self.agentCrashed = False
|
||||
self.agents = agents
|
||||
self.display = display
|
||||
self.rules = rules
|
||||
self.startingIndex = startingIndex
|
||||
self.gameOver = False
|
||||
self.muteAgents = muteAgents
|
||||
self.catchExceptions = catchExceptions
|
||||
self.moveHistory = []
|
||||
self.totalAgentTimes = [0 for agent in agents]
|
||||
self.totalAgentTimeWarnings = [0 for agent in agents]
|
||||
self.agentTimeout = False
|
||||
import io
|
||||
self.agentOutput = [io.StringIO() for agent in agents]
|
||||
|
||||
def getProgress(self):
|
||||
if self.gameOver:
|
||||
return 1.0
|
||||
else:
|
||||
return self.rules.getProgress(self)
|
||||
|
||||
def _agentCrash( self, agentIndex, quiet=False):
|
||||
"Helper method for handling agent crashes"
|
||||
if not quiet: traceback.print_exc()
|
||||
self.gameOver = True
|
||||
self.agentCrashed = True
|
||||
self.rules.agentCrash(self, agentIndex)
|
||||
|
||||
OLD_STDOUT = None
|
||||
OLD_STDERR = None
|
||||
|
||||
def mute(self, agentIndex):
|
||||
if not self.muteAgents: return
|
||||
global OLD_STDOUT, OLD_STDERR
|
||||
import io
|
||||
OLD_STDOUT = sys.stdout
|
||||
OLD_STDERR = sys.stderr
|
||||
sys.stdout = self.agentOutput[agentIndex]
|
||||
sys.stderr = self.agentOutput[agentIndex]
|
||||
|
||||
def unmute(self):
|
||||
if not self.muteAgents: return
|
||||
global OLD_STDOUT, OLD_STDERR
|
||||
# Revert stdout/stderr to originals
|
||||
sys.stdout = OLD_STDOUT
|
||||
sys.stderr = OLD_STDERR
|
||||
|
||||
|
||||
def run( self ):
|
||||
"""
|
||||
Main control loop for game play.
|
||||
"""
|
||||
self.display.initialize(self.state.data)
|
||||
self.numMoves = 0
|
||||
|
||||
###self.display.initialize(self.state.makeObservation(1).data)
|
||||
# inform learning agents of the game start
|
||||
for i in range(len(self.agents)):
|
||||
agent = self.agents[i]
|
||||
if not agent:
|
||||
self.mute(i)
|
||||
# this is a null agent, meaning it failed to load
|
||||
# the other team wins
|
||||
print("Agent %d failed to load" % i, file=sys.stderr)
|
||||
self.unmute()
|
||||
self._agentCrash(i, quiet=True)
|
||||
return
|
||||
if ("registerInitialState" in dir(agent)):
|
||||
self.mute(i)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i)))
|
||||
try:
|
||||
start_time = time.time()
|
||||
timed_func(self.state.deepCopy())
|
||||
time_taken = time.time() - start_time
|
||||
self.totalAgentTimes[i] += time_taken
|
||||
except TimeoutFunctionException:
|
||||
print("Agent %d ran out of time on startup!" % i, file=sys.stderr)
|
||||
self.unmute()
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(i, quiet=True)
|
||||
return
|
||||
except Exception as data:
|
||||
self._agentCrash(i, quiet=False)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
agent.registerInitialState(self.state.deepCopy())
|
||||
## TODO: could this exceed the total time
|
||||
self.unmute()
|
||||
|
||||
agentIndex = self.startingIndex
|
||||
numAgents = len( self.agents )
|
||||
|
||||
while not self.gameOver:
|
||||
# Fetch the next agent
|
||||
agent = self.agents[agentIndex]
|
||||
move_time = 0
|
||||
skip_action = False
|
||||
# Generate an observation of the state
|
||||
if 'observationFunction' in dir( agent ):
|
||||
self.mute(agentIndex)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex)))
|
||||
try:
|
||||
start_time = time.time()
|
||||
observation = timed_func(self.state.deepCopy())
|
||||
except TimeoutFunctionException:
|
||||
skip_action = True
|
||||
move_time += time.time() - start_time
|
||||
self.unmute()
|
||||
except Exception as data:
|
||||
self._agentCrash(agentIndex, quiet=False)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
observation = agent.observationFunction(self.state.deepCopy())
|
||||
self.unmute()
|
||||
else:
|
||||
observation = self.state.deepCopy()
|
||||
|
||||
# Solicit an action
|
||||
action = None
|
||||
self.mute(agentIndex)
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time))
|
||||
try:
|
||||
start_time = time.time()
|
||||
if skip_action:
|
||||
raise TimeoutFunctionException()
|
||||
action = timed_func( observation )
|
||||
except TimeoutFunctionException:
|
||||
print("Agent %d timed out on a single move!" % agentIndex, file=sys.stderr)
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
|
||||
move_time += time.time() - start_time
|
||||
|
||||
if move_time > self.rules.getMoveWarningTime(agentIndex):
|
||||
self.totalAgentTimeWarnings[agentIndex] += 1
|
||||
print("Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
|
||||
if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
|
||||
print("Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex]), file=sys.stderr)
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
|
||||
self.totalAgentTimes[agentIndex] += move_time
|
||||
#print("Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex]))
|
||||
if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
|
||||
print("Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex]), file=sys.stderr)
|
||||
self.agentTimeout = True
|
||||
self._agentCrash(agentIndex, quiet=True)
|
||||
self.unmute()
|
||||
return
|
||||
self.unmute()
|
||||
except Exception as data:
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
action = agent.getAction(observation)
|
||||
self.unmute()
|
||||
|
||||
# Execute the action
|
||||
self.moveHistory.append( (agentIndex, action) )
|
||||
if self.catchExceptions:
|
||||
try:
|
||||
self.state = self.state.generateSuccessor( agentIndex, action )
|
||||
except Exception as data:
|
||||
self.mute(agentIndex)
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
else:
|
||||
self.state = self.state.generateSuccessor( agentIndex, action )
|
||||
|
||||
# Change the display
|
||||
self.display.update( self.state.data )
|
||||
###idx = agentIndex - agentIndex % 2 + 1
|
||||
###self.display.update( self.state.makeObservation(idx).data )
|
||||
|
||||
# Allow for game specific conditions (winning, losing, etc.)
|
||||
self.rules.process(self.state, self)
|
||||
# Track progress
|
||||
if agentIndex == numAgents + 1: self.numMoves += 1
|
||||
# Next agent
|
||||
agentIndex = ( agentIndex + 1 ) % numAgents
|
||||
|
||||
if _BOINC_ENABLED:
|
||||
boinc.set_fraction_done(self.getProgress())
|
||||
|
||||
# inform a learning agent of the game result
|
||||
for agentIndex, agent in enumerate(self.agents):
|
||||
if "final" in dir( agent ) :
|
||||
try:
|
||||
self.mute(agentIndex)
|
||||
agent.final( self.state )
|
||||
self.unmute()
|
||||
except Exception as data:
|
||||
if not self.catchExceptions: raise data
|
||||
self._agentCrash(agentIndex)
|
||||
self.unmute()
|
||||
return
|
||||
self.display.finish()
|
@ -0,0 +1,81 @@
|
||||
# ghostAgents.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from game import Agent
|
||||
from game import Actions
|
||||
from game import Directions
|
||||
import random
|
||||
from util import manhattanDistance
|
||||
import util
|
||||
|
||||
class GhostAgent( Agent ):
|
||||
def __init__( self, index ):
|
||||
self.index = index
|
||||
|
||||
def getAction( self, state ):
|
||||
dist = self.getDistribution(state)
|
||||
if len(dist) == 0:
|
||||
return Directions.STOP
|
||||
else:
|
||||
return util.chooseFromDistribution( dist )
|
||||
|
||||
def getDistribution(self, state):
|
||||
"Returns a Counter encoding a distribution over actions from the provided state."
|
||||
util.raiseNotDefined()
|
||||
|
||||
class RandomGhost( GhostAgent ):
|
||||
"A ghost that chooses a legal action uniformly at random."
|
||||
def getDistribution( self, state ):
|
||||
dist = util.Counter()
|
||||
for a in state.getLegalActions( self.index ): dist[a] = 1.0
|
||||
dist.normalize()
|
||||
return dist
|
||||
|
||||
class DirectionalGhost( GhostAgent ):
|
||||
"A ghost that prefers to rush Pacman, or flee when scared."
|
||||
def __init__( self, index, prob_attack=0.8, prob_scaredFlee=0.8 ):
|
||||
self.index = index
|
||||
self.prob_attack = prob_attack
|
||||
self.prob_scaredFlee = prob_scaredFlee
|
||||
|
||||
def getDistribution( self, state ):
|
||||
# Read variables from state
|
||||
ghostState = state.getGhostState( self.index )
|
||||
legalActions = state.getLegalActions( self.index )
|
||||
pos = state.getGhostPosition( self.index )
|
||||
isScared = ghostState.scaredTimer > 0
|
||||
|
||||
speed = 1
|
||||
if isScared: speed = 0.5
|
||||
|
||||
actionVectors = [Actions.directionToVector( a, speed ) for a in legalActions]
|
||||
newPositions = [( pos[0]+a[0], pos[1]+a[1] ) for a in actionVectors]
|
||||
pacmanPosition = state.getPacmanPosition()
|
||||
|
||||
# Select best actions given the state
|
||||
distancesToPacman = [manhattanDistance( pos, pacmanPosition ) for pos in newPositions]
|
||||
if isScared:
|
||||
bestScore = max( distancesToPacman )
|
||||
bestProb = self.prob_scaredFlee
|
||||
else:
|
||||
bestScore = min( distancesToPacman )
|
||||
bestProb = self.prob_attack
|
||||
bestActions = [action for action, distance in zip( legalActions, distancesToPacman ) if distance == bestScore]
|
||||
|
||||
# Construct distribution
|
||||
dist = util.Counter()
|
||||
for a in bestActions: dist[a] = bestProb / len(bestActions)
|
||||
for a in legalActions: dist[a] += ( 1-bestProb ) / len(legalActions)
|
||||
dist.normalize()
|
||||
return dist
|
@ -0,0 +1,329 @@
|
||||
# grading.py
|
||||
# ----------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"Common code for autograders"
|
||||
|
||||
import cgi
|
||||
import time
|
||||
import sys
|
||||
import json
|
||||
import traceback
|
||||
import pdb
|
||||
from collections import defaultdict
|
||||
import util
|
||||
|
||||
|
||||
class Grades:
|
||||
"A data structure for project grades, along with formatting code to display them"
|
||||
|
||||
def __init__(self, projectName, questionsAndMaxesList,
|
||||
gsOutput=False, edxOutput=False, muteOutput=False):
|
||||
"""
|
||||
Defines the grading scheme for a project
|
||||
projectName: project name
|
||||
questionsAndMaxesDict: a list of (question name, max points per question)
|
||||
"""
|
||||
self.questions = [el[0] for el in questionsAndMaxesList]
|
||||
self.maxes = dict(questionsAndMaxesList)
|
||||
self.points = Counter()
|
||||
self.messages = dict([(q, []) for q in self.questions])
|
||||
self.project = projectName
|
||||
self.start = time.localtime()[1:6]
|
||||
self.sane = True # Sanity checks
|
||||
self.currentQuestion = None # Which question we're grading
|
||||
self.edxOutput = edxOutput
|
||||
self.gsOutput = gsOutput # GradeScope output
|
||||
self.mute = muteOutput
|
||||
self.prereqs = defaultdict(set)
|
||||
|
||||
#print('Autograder transcript for %s' % self.project)
|
||||
print('Starting on %d-%d at %d:%02d:%02d' % self.start)
|
||||
|
||||
def addPrereq(self, question, prereq):
|
||||
self.prereqs[question].add(prereq)
|
||||
|
||||
def grade(self, gradingModule, exceptionMap={}, bonusPic=False):
|
||||
"""
|
||||
Grades each question
|
||||
gradingModule: the module with all the grading functions (pass in with sys.modules[__name__])
|
||||
"""
|
||||
|
||||
completedQuestions = set([])
|
||||
for q in self.questions:
|
||||
print('\nQuestion %s' % q)
|
||||
print('=' * (9 + len(q)))
|
||||
print
|
||||
self.currentQuestion = q
|
||||
|
||||
incompleted = self.prereqs[q].difference(completedQuestions)
|
||||
if len(incompleted) > 0:
|
||||
prereq = incompleted.pop()
|
||||
print(
|
||||
"""*** NOTE: Make sure to complete Question %s before working on Question %s,
|
||||
*** because Question %s builds upon your answer for Question %s.
|
||||
""" % (prereq, q, q, prereq))
|
||||
continue
|
||||
|
||||
if self.mute:
|
||||
util.mutePrint()
|
||||
try:
|
||||
util.TimeoutFunction(getattr(gradingModule, q), 1800)(
|
||||
self) # Call the question's function
|
||||
# TimeoutFunction(getattr(gradingModule, q),1200)(self) # Call the question's function
|
||||
except Exception as inst:
|
||||
self.addExceptionMessage(q, inst, traceback)
|
||||
self.addErrorHints(exceptionMap, inst, q[1])
|
||||
except:
|
||||
self.fail('FAIL: Terminated with a string exception.')
|
||||
finally:
|
||||
if self.mute:
|
||||
util.unmutePrint()
|
||||
|
||||
if self.points[q] >= self.maxes[q]:
|
||||
completedQuestions.add(q)
|
||||
|
||||
print('\n### Question %s: %d/%d ###\n' %
|
||||
(q, self.points[q], self.maxes[q]))
|
||||
|
||||
print('\nFinished at %d:%02d:%02d' % time.localtime()[3:6])
|
||||
print("\nProvisional grades\n==================")
|
||||
|
||||
for q in self.questions:
|
||||
print('Question %s: %d/%d' % (q, self.points[q], self.maxes[q]))
|
||||
print('------------------')
|
||||
print('Total: %d/%d' %
|
||||
(self.points.totalCount(), sum(self.maxes.values())))
|
||||
if bonusPic and self.points.totalCount() == 25:
|
||||
print("""
|
||||
|
||||
ALL HAIL GRANDPAC.
|
||||
LONG LIVE THE GHOSTBUSTING KING.
|
||||
|
||||
--- ---- ---
|
||||
| \ / + \ / |
|
||||
| + \--/ \--/ + |
|
||||
| + + |
|
||||
| + + + |
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
V \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
\ / @@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
V @@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@
|
||||
/\ @@@@@@@@@@@@@@@@@@@@@@
|
||||
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/\ / @@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/ \ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
/ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@@@@@@@@@
|
||||
@@@@@@@@@@@@@@@@@@
|
||||
|
||||
""")
|
||||
print("""
|
||||
Your grades are NOT yet registered. To register your grades, make sure
|
||||
to follow your instructor's guidelines to receive credit on your project.
|
||||
""")
|
||||
|
||||
if self.edxOutput:
|
||||
self.produceOutput()
|
||||
if self.gsOutput:
|
||||
self.produceGradeScopeOutput()
|
||||
|
||||
def addExceptionMessage(self, q, inst, traceback):
|
||||
"""
|
||||
Method to format the exception message, this is more complicated because
|
||||
we need to cgi.escape the traceback but wrap the exception in a <pre> tag
|
||||
"""
|
||||
self.fail('FAIL: Exception raised: %s' % inst)
|
||||
self.addMessage('')
|
||||
for line in traceback.format_exc().split('\n'):
|
||||
self.addMessage(line)
|
||||
|
||||
def addErrorHints(self, exceptionMap, errorInstance, questionNum):
|
||||
typeOf = str(type(errorInstance))
|
||||
questionName = 'q' + questionNum
|
||||
errorHint = ''
|
||||
|
||||
# question specific error hints
|
||||
if exceptionMap.get(questionName):
|
||||
questionMap = exceptionMap.get(questionName)
|
||||
if (questionMap.get(typeOf)):
|
||||
errorHint = questionMap.get(typeOf)
|
||||
# fall back to general error messages if a question specific
|
||||
# one does not exist
|
||||
if (exceptionMap.get(typeOf)):
|
||||
errorHint = exceptionMap.get(typeOf)
|
||||
|
||||
# dont include the HTML if we have no error hint
|
||||
if not errorHint:
|
||||
return ''
|
||||
|
||||
for line in errorHint.split('\n'):
|
||||
self.addMessage(line)
|
||||
|
||||
def produceGradeScopeOutput(self):
|
||||
out_dct = {}
|
||||
|
||||
# total of entire submission
|
||||
total_possible = sum(self.maxes.values())
|
||||
total_score = sum(self.points.values())
|
||||
out_dct['score'] = total_score
|
||||
out_dct['max_score'] = total_possible
|
||||
out_dct['output'] = "Total score (%d / %d)" % (
|
||||
total_score, total_possible)
|
||||
|
||||
# individual tests
|
||||
tests_out = []
|
||||
for name in self.questions:
|
||||
test_out = {}
|
||||
# test name
|
||||
test_out['name'] = name
|
||||
# test score
|
||||
test_out['score'] = self.points[name]
|
||||
test_out['max_score'] = self.maxes[name]
|
||||
# others
|
||||
is_correct = self.points[name] >= self.maxes[name]
|
||||
test_out['output'] = " Question {num} ({points}/{max}) {correct}".format(
|
||||
num=(name[1] if len(name) == 2 else name),
|
||||
points=test_out['score'],
|
||||
max=test_out['max_score'],
|
||||
correct=('X' if not is_correct else ''),
|
||||
)
|
||||
test_out['tags'] = []
|
||||
tests_out.append(test_out)
|
||||
out_dct['tests'] = tests_out
|
||||
|
||||
# file output
|
||||
with open('gradescope_response.json', 'w') as outfile:
|
||||
json.dump(out_dct, outfile)
|
||||
return
|
||||
|
||||
def produceOutput(self):
|
||||
edxOutput = open('edx_response.html', 'w')
|
||||
edxOutput.write("<div>")
|
||||
|
||||
# first sum
|
||||
total_possible = sum(self.maxes.values())
|
||||
total_score = sum(self.points.values())
|
||||
checkOrX = '<span class="incorrect"/>'
|
||||
if (total_score >= total_possible):
|
||||
checkOrX = '<span class="correct"/>'
|
||||
header = """
|
||||
<h3>
|
||||
Total score ({total_score} / {total_possible})
|
||||
</h3>
|
||||
""".format(total_score=total_score,
|
||||
total_possible=total_possible,
|
||||
checkOrX=checkOrX
|
||||
)
|
||||
edxOutput.write(header)
|
||||
|
||||
for q in self.questions:
|
||||
if len(q) == 2:
|
||||
name = q[1]
|
||||
else:
|
||||
name = q
|
||||
checkOrX = '<span class="incorrect"/>'
|
||||
if (self.points[q] >= self.maxes[q]):
|
||||
checkOrX = '<span class="correct"/>'
|
||||
#messages = '\n<br/>\n'.join(self.messages[q])
|
||||
messages = "<pre>%s</pre>" % '\n'.join(self.messages[q])
|
||||
output = """
|
||||
<div class="test">
|
||||
<section>
|
||||
<div class="shortform">
|
||||
Question {q} ({points}/{max}) {checkOrX}
|
||||
</div>
|
||||
<div class="longform">
|
||||
{messages}
|
||||
</div>
|
||||
</section>
|
||||
</div>
|
||||
""".format(q=name,
|
||||
max=self.maxes[q],
|
||||
messages=messages,
|
||||
checkOrX=checkOrX,
|
||||
points=self.points[q]
|
||||
)
|
||||
# print("*** output for Question %s " % q[1])
|
||||
# print(output)
|
||||
edxOutput.write(output)
|
||||
edxOutput.write("</div>")
|
||||
edxOutput.close()
|
||||
edxOutput = open('edx_grade', 'w')
|
||||
edxOutput.write(str(self.points.totalCount()))
|
||||
edxOutput.close()
|
||||
|
||||
def fail(self, message, raw=False):
|
||||
"Sets sanity check bit to false and outputs a message"
|
||||
self.sane = False
|
||||
self.assignZeroCredit()
|
||||
self.addMessage(message, raw)
|
||||
|
||||
def assignZeroCredit(self):
|
||||
self.points[self.currentQuestion] = 0
|
||||
|
||||
def addPoints(self, amt):
|
||||
self.points[self.currentQuestion] += amt
|
||||
|
||||
def deductPoints(self, amt):
|
||||
self.points[self.currentQuestion] -= amt
|
||||
|
||||
def assignFullCredit(self, message="", raw=False):
|
||||
self.points[self.currentQuestion] = self.maxes[self.currentQuestion]
|
||||
if message != "":
|
||||
self.addMessage(message, raw)
|
||||
|
||||
def addMessage(self, message, raw=False):
|
||||
if not raw:
|
||||
# We assume raw messages, formatted for HTML, are printed separately
|
||||
if self.mute:
|
||||
util.unmutePrint()
|
||||
print('*** ' + message)
|
||||
if self.mute:
|
||||
util.mutePrint()
|
||||
message = cgi.escape(message)
|
||||
self.messages[self.currentQuestion].append(message)
|
||||
|
||||
def addMessageToEmail(self, message):
|
||||
print("WARNING**** addMessageToEmail is deprecated %s" % message)
|
||||
for line in message.split('\n'):
|
||||
pass
|
||||
#print('%%% ' + line + ' %%%')
|
||||
# self.messages[self.currentQuestion].append(line)
|
||||
|
||||
|
||||
class Counter(dict):
|
||||
"""
|
||||
Dict with default 0
|
||||
"""
|
||||
|
||||
def __getitem__(self, idx):
|
||||
try:
|
||||
return dict.__getitem__(self, idx)
|
||||
except KeyError:
|
||||
return 0
|
||||
|
||||
def totalCount(self):
|
||||
"""
|
||||
Returns the sum of counts for all keys.
|
||||
"""
|
||||
return sum(self.values())
|
@ -0,0 +1,679 @@
|
||||
# graphicsDisplay.py
|
||||
# ------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from graphicsUtils import *
|
||||
import math, time
|
||||
from game import Directions
|
||||
|
||||
###########################
|
||||
# GRAPHICS DISPLAY CODE #
|
||||
###########################
|
||||
|
||||
# Most code by Dan Klein and John Denero written or rewritten for cs188, UC Berkeley.
|
||||
# Some code from a Pacman implementation by LiveWires, and used / modified with permission.
|
||||
|
||||
DEFAULT_GRID_SIZE = 30.0
|
||||
INFO_PANE_HEIGHT = 35
|
||||
BACKGROUND_COLOR = formatColor(0,0,0)
|
||||
WALL_COLOR = formatColor(0.0/255.0, 51.0/255.0, 255.0/255.0)
|
||||
INFO_PANE_COLOR = formatColor(.4,.4,0)
|
||||
SCORE_COLOR = formatColor(.9, .9, .9)
|
||||
PACMAN_OUTLINE_WIDTH = 2
|
||||
PACMAN_CAPTURE_OUTLINE_WIDTH = 4
|
||||
|
||||
GHOST_COLORS = []
|
||||
GHOST_COLORS.append(formatColor(.9,0,0)) # Red
|
||||
GHOST_COLORS.append(formatColor(0,.3,.9)) # Blue
|
||||
GHOST_COLORS.append(formatColor(.98,.41,.07)) # Orange
|
||||
GHOST_COLORS.append(formatColor(.1,.75,.7)) # Green
|
||||
GHOST_COLORS.append(formatColor(1.0,0.6,0.0)) # Yellow
|
||||
GHOST_COLORS.append(formatColor(.4,0.13,0.91)) # Purple
|
||||
|
||||
TEAM_COLORS = GHOST_COLORS[:2]
|
||||
|
||||
GHOST_SHAPE = [
|
||||
( 0, 0.3 ),
|
||||
( 0.25, 0.75 ),
|
||||
( 0.5, 0.3 ),
|
||||
( 0.75, 0.75 ),
|
||||
( 0.75, -0.5 ),
|
||||
( 0.5, -0.75 ),
|
||||
(-0.5, -0.75 ),
|
||||
(-0.75, -0.5 ),
|
||||
(-0.75, 0.75 ),
|
||||
(-0.5, 0.3 ),
|
||||
(-0.25, 0.75 )
|
||||
]
|
||||
GHOST_SIZE = 0.65
|
||||
SCARED_COLOR = formatColor(1,1,1)
|
||||
|
||||
GHOST_VEC_COLORS = [colorToVector(c) for c in GHOST_COLORS]
|
||||
|
||||
PACMAN_COLOR = formatColor(255.0/255.0,255.0/255.0,61.0/255)
|
||||
PACMAN_SCALE = 0.5
|
||||
#pacman_speed = 0.25
|
||||
|
||||
# Food
|
||||
FOOD_COLOR = formatColor(1,1,1)
|
||||
FOOD_SIZE = 0.1
|
||||
|
||||
# Laser
|
||||
LASER_COLOR = formatColor(1,0,0)
|
||||
LASER_SIZE = 0.02
|
||||
|
||||
# Capsule graphics
|
||||
CAPSULE_COLOR = formatColor(1,1,1)
|
||||
CAPSULE_SIZE = 0.25
|
||||
|
||||
# Drawing walls
|
||||
WALL_RADIUS = 0.15
|
||||
|
||||
class InfoPane:
|
||||
def __init__(self, layout, gridSize):
|
||||
self.gridSize = gridSize
|
||||
self.width = (layout.width) * gridSize
|
||||
self.base = (layout.height + 1) * gridSize
|
||||
self.height = INFO_PANE_HEIGHT
|
||||
self.fontSize = 24
|
||||
self.textColor = PACMAN_COLOR
|
||||
self.drawPane()
|
||||
|
||||
def toScreen(self, pos, y = None):
|
||||
"""
|
||||
Translates a point relative from the bottom left of the info pane.
|
||||
"""
|
||||
if y == None:
|
||||
x,y = pos
|
||||
else:
|
||||
x = pos
|
||||
|
||||
x = self.gridSize + x # Margin
|
||||
y = self.base + y
|
||||
return x,y
|
||||
|
||||
def drawPane(self):
|
||||
self.scoreText = text( self.toScreen(0, 0 ), self.textColor, "SCORE: 0", "Times", self.fontSize, "bold")
|
||||
|
||||
def initializeGhostDistances(self, distances):
|
||||
self.ghostDistanceText = []
|
||||
|
||||
size = 20
|
||||
if self.width < 240:
|
||||
size = 12
|
||||
if self.width < 160:
|
||||
size = 10
|
||||
|
||||
for i, d in enumerate(distances):
|
||||
t = text( self.toScreen(self.width//2 + self.width//8 * i, 0), GHOST_COLORS[i+1], d, "Times", size, "bold")
|
||||
self.ghostDistanceText.append(t)
|
||||
|
||||
def updateScore(self, score):
|
||||
changeText(self.scoreText, "SCORE: % 4d" % score)
|
||||
|
||||
def setTeam(self, isBlue):
|
||||
text = "RED TEAM"
|
||||
if isBlue: text = "BLUE TEAM"
|
||||
self.teamText = text( self.toScreen(300, 0 ), self.textColor, text, "Times", self.fontSize, "bold")
|
||||
|
||||
def updateGhostDistances(self, distances):
|
||||
if len(distances) == 0: return
|
||||
if 'ghostDistanceText' not in dir(self): self.initializeGhostDistances(distances)
|
||||
else:
|
||||
for i, d in enumerate(distances):
|
||||
changeText(self.ghostDistanceText[i], d)
|
||||
|
||||
def drawGhost(self):
|
||||
pass
|
||||
|
||||
def drawPacman(self):
|
||||
pass
|
||||
|
||||
def drawWarning(self):
|
||||
pass
|
||||
|
||||
def clearIcon(self):
|
||||
pass
|
||||
|
||||
def updateMessage(self, message):
|
||||
pass
|
||||
|
||||
def clearMessage(self):
|
||||
pass
|
||||
|
||||
|
||||
class PacmanGraphics:
|
||||
def __init__(self, zoom=1.0, frameTime=0.0, capture=False):
|
||||
self.have_window = 0
|
||||
self.currentGhostImages = {}
|
||||
self.pacmanImage = None
|
||||
self.zoom = zoom
|
||||
self.gridSize = DEFAULT_GRID_SIZE * zoom
|
||||
self.capture = capture
|
||||
self.frameTime = frameTime
|
||||
|
||||
def checkNullDisplay(self):
|
||||
return False
|
||||
|
||||
def initialize(self, state, isBlue = False):
|
||||
self.isBlue = isBlue
|
||||
self.startGraphics(state)
|
||||
|
||||
# self.drawDistributions(state)
|
||||
self.distributionImages = None # Initialized lazily
|
||||
self.drawStaticObjects(state)
|
||||
self.drawAgentObjects(state)
|
||||
|
||||
# Information
|
||||
self.previousState = state
|
||||
|
||||
def startGraphics(self, state):
|
||||
self.layout = state.layout
|
||||
layout = self.layout
|
||||
self.width = layout.width
|
||||
self.height = layout.height
|
||||
self.make_window(self.width, self.height)
|
||||
self.infoPane = InfoPane(layout, self.gridSize)
|
||||
self.currentState = layout
|
||||
|
||||
def drawDistributions(self, state):
|
||||
walls = state.layout.walls
|
||||
dist = []
|
||||
for x in range(walls.width):
|
||||
distx = []
|
||||
dist.append(distx)
|
||||
for y in range(walls.height):
|
||||
( screen_x, screen_y ) = self.to_screen( (x, y) )
|
||||
block = square( (screen_x, screen_y),
|
||||
0.5 * self.gridSize,
|
||||
color = BACKGROUND_COLOR,
|
||||
filled = 1, behind=2)
|
||||
distx.append(block)
|
||||
self.distributionImages = dist
|
||||
|
||||
def drawStaticObjects(self, state):
|
||||
layout = self.layout
|
||||
self.drawWalls(layout.walls)
|
||||
self.food = self.drawFood(layout.food)
|
||||
self.capsules = self.drawCapsules(layout.capsules)
|
||||
refresh()
|
||||
|
||||
def drawAgentObjects(self, state):
|
||||
self.agentImages = [] # (agentState, image)
|
||||
for index, agent in enumerate(state.agentStates):
|
||||
if agent.isPacman:
|
||||
image = self.drawPacman(agent, index)
|
||||
self.agentImages.append( (agent, image) )
|
||||
else:
|
||||
image = self.drawGhost(agent, index)
|
||||
self.agentImages.append( (agent, image) )
|
||||
refresh()
|
||||
|
||||
def swapImages(self, agentIndex, newState):
|
||||
"""
|
||||
Changes an image from a ghost to a pacman or vis versa (for capture)
|
||||
"""
|
||||
prevState, prevImage = self.agentImages[agentIndex]
|
||||
for item in prevImage: remove_from_screen(item)
|
||||
if newState.isPacman:
|
||||
image = self.drawPacman(newState, agentIndex)
|
||||
self.agentImages[agentIndex] = (newState, image )
|
||||
else:
|
||||
image = self.drawGhost(newState, agentIndex)
|
||||
self.agentImages[agentIndex] = (newState, image )
|
||||
refresh()
|
||||
|
||||
def update(self, newState):
|
||||
agentIndex = newState._agentMoved
|
||||
agentState = newState.agentStates[agentIndex]
|
||||
|
||||
if self.agentImages[agentIndex][0].isPacman != agentState.isPacman: self.swapImages(agentIndex, agentState)
|
||||
prevState, prevImage = self.agentImages[agentIndex]
|
||||
if agentState.isPacman:
|
||||
self.animatePacman(agentState, prevState, prevImage)
|
||||
else:
|
||||
self.moveGhost(agentState, agentIndex, prevState, prevImage)
|
||||
self.agentImages[agentIndex] = (agentState, prevImage)
|
||||
|
||||
if newState._foodEaten != None:
|
||||
self.removeFood(newState._foodEaten, self.food)
|
||||
if newState._capsuleEaten != None:
|
||||
self.removeCapsule(newState._capsuleEaten, self.capsules)
|
||||
self.infoPane.updateScore(newState.score)
|
||||
if 'ghostDistances' in dir(newState):
|
||||
self.infoPane.updateGhostDistances(newState.ghostDistances)
|
||||
|
||||
def make_window(self, width, height):
|
||||
grid_width = (width-1) * self.gridSize
|
||||
grid_height = (height-1) * self.gridSize
|
||||
screen_width = 2*self.gridSize + grid_width
|
||||
screen_height = 2*self.gridSize + grid_height + INFO_PANE_HEIGHT
|
||||
|
||||
begin_graphics(screen_width,
|
||||
screen_height,
|
||||
BACKGROUND_COLOR,
|
||||
"CS188 Pacman")
|
||||
|
||||
def drawPacman(self, pacman, index):
|
||||
position = self.getPosition(pacman)
|
||||
screen_point = self.to_screen(position)
|
||||
endpoints = self.getEndpoints(self.getDirection(pacman))
|
||||
|
||||
width = PACMAN_OUTLINE_WIDTH
|
||||
outlineColor = PACMAN_COLOR
|
||||
fillColor = PACMAN_COLOR
|
||||
|
||||
if self.capture:
|
||||
outlineColor = TEAM_COLORS[index % 2]
|
||||
fillColor = GHOST_COLORS[index]
|
||||
width = PACMAN_CAPTURE_OUTLINE_WIDTH
|
||||
|
||||
return [circle(screen_point, PACMAN_SCALE * self.gridSize,
|
||||
fillColor = fillColor, outlineColor = outlineColor,
|
||||
endpoints = endpoints,
|
||||
width = width)]
|
||||
|
||||
def getEndpoints(self, direction, position=(0,0)):
|
||||
x, y = position
|
||||
pos = x - int(x) + y - int(y)
|
||||
width = 30 + 80 * math.sin(math.pi* pos)
|
||||
|
||||
delta = width / 2
|
||||
if (direction == 'West'):
|
||||
endpoints = (180+delta, 180-delta)
|
||||
elif (direction == 'North'):
|
||||
endpoints = (90+delta, 90-delta)
|
||||
elif (direction == 'South'):
|
||||
endpoints = (270+delta, 270-delta)
|
||||
else:
|
||||
endpoints = (0+delta, 0-delta)
|
||||
return endpoints
|
||||
|
||||
def movePacman(self, position, direction, image):
|
||||
screenPosition = self.to_screen(position)
|
||||
endpoints = self.getEndpoints( direction, position )
|
||||
r = PACMAN_SCALE * self.gridSize
|
||||
moveCircle(image[0], screenPosition, r, endpoints)
|
||||
refresh()
|
||||
|
||||
def animatePacman(self, pacman, prevPacman, image):
|
||||
if self.frameTime < 0:
|
||||
print('Press any key to step forward, "q" to play')
|
||||
keys = wait_for_keys()
|
||||
if 'q' in keys:
|
||||
self.frameTime = 0.1
|
||||
if self.frameTime > 0.01 or self.frameTime < 0:
|
||||
start = time.time()
|
||||
fx, fy = self.getPosition(prevPacman)
|
||||
px, py = self.getPosition(pacman)
|
||||
frames = 4.0
|
||||
for i in range(1,int(frames) + 1):
|
||||
pos = px*i/frames + fx*(frames-i)/frames, py*i/frames + fy*(frames-i)/frames
|
||||
self.movePacman(pos, self.getDirection(pacman), image)
|
||||
refresh()
|
||||
sleep(abs(self.frameTime) / frames)
|
||||
else:
|
||||
self.movePacman(self.getPosition(pacman), self.getDirection(pacman), image)
|
||||
refresh()
|
||||
|
||||
def getGhostColor(self, ghost, ghostIndex):
|
||||
if ghost.scaredTimer > 0:
|
||||
return SCARED_COLOR
|
||||
else:
|
||||
return GHOST_COLORS[ghostIndex]
|
||||
|
||||
def drawGhost(self, ghost, agentIndex):
|
||||
pos = self.getPosition(ghost)
|
||||
dir = self.getDirection(ghost)
|
||||
(screen_x, screen_y) = (self.to_screen(pos) )
|
||||
coords = []
|
||||
for (x, y) in GHOST_SHAPE:
|
||||
coords.append((x*self.gridSize*GHOST_SIZE + screen_x, y*self.gridSize*GHOST_SIZE + screen_y))
|
||||
|
||||
colour = self.getGhostColor(ghost, agentIndex)
|
||||
body = polygon(coords, colour, filled = 1)
|
||||
WHITE = formatColor(1.0, 1.0, 1.0)
|
||||
BLACK = formatColor(0.0, 0.0, 0.0)
|
||||
|
||||
dx = 0
|
||||
dy = 0
|
||||
if dir == 'North':
|
||||
dy = -0.2
|
||||
if dir == 'South':
|
||||
dy = 0.2
|
||||
if dir == 'East':
|
||||
dx = 0.2
|
||||
if dir == 'West':
|
||||
dx = -0.2
|
||||
leftEye = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
|
||||
rightEye = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2, WHITE, WHITE)
|
||||
leftPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
|
||||
rightPupil = circle((screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08, BLACK, BLACK)
|
||||
ghostImageParts = []
|
||||
ghostImageParts.append(body)
|
||||
ghostImageParts.append(leftEye)
|
||||
ghostImageParts.append(rightEye)
|
||||
ghostImageParts.append(leftPupil)
|
||||
ghostImageParts.append(rightPupil)
|
||||
|
||||
return ghostImageParts
|
||||
|
||||
def moveEyes(self, pos, dir, eyes):
|
||||
(screen_x, screen_y) = (self.to_screen(pos) )
|
||||
dx = 0
|
||||
dy = 0
|
||||
if dir == 'North':
|
||||
dy = -0.2
|
||||
if dir == 'South':
|
||||
dy = 0.2
|
||||
if dir == 'East':
|
||||
dx = 0.2
|
||||
if dir == 'West':
|
||||
dx = -0.2
|
||||
moveCircle(eyes[0],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
|
||||
moveCircle(eyes[1],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx/1.5), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy/1.5)), self.gridSize*GHOST_SIZE*0.2)
|
||||
moveCircle(eyes[2],(screen_x+self.gridSize*GHOST_SIZE*(-0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
|
||||
moveCircle(eyes[3],(screen_x+self.gridSize*GHOST_SIZE*(0.3+dx), screen_y-self.gridSize*GHOST_SIZE*(0.3-dy)), self.gridSize*GHOST_SIZE*0.08)
|
||||
|
||||
def moveGhost(self, ghost, ghostIndex, prevGhost, ghostImageParts):
|
||||
old_x, old_y = self.to_screen(self.getPosition(prevGhost))
|
||||
new_x, new_y = self.to_screen(self.getPosition(ghost))
|
||||
delta = new_x - old_x, new_y - old_y
|
||||
|
||||
for ghostImagePart in ghostImageParts:
|
||||
move_by(ghostImagePart, delta)
|
||||
refresh()
|
||||
|
||||
if ghost.scaredTimer > 0:
|
||||
color = SCARED_COLOR
|
||||
else:
|
||||
color = GHOST_COLORS[ghostIndex]
|
||||
edit(ghostImageParts[0], ('fill', color), ('outline', color))
|
||||
self.moveEyes(self.getPosition(ghost), self.getDirection(ghost), ghostImageParts[-4:])
|
||||
refresh()
|
||||
|
||||
def getPosition(self, agentState):
|
||||
if agentState.configuration == None: return (-1000, -1000)
|
||||
return agentState.getPosition()
|
||||
|
||||
def getDirection(self, agentState):
|
||||
if agentState.configuration == None: return Directions.STOP
|
||||
return agentState.configuration.getDirection()
|
||||
|
||||
def finish(self):
|
||||
end_graphics()
|
||||
|
||||
def to_screen(self, point):
|
||||
( x, y ) = point
|
||||
#y = self.height - y
|
||||
x = (x + 1)*self.gridSize
|
||||
y = (self.height - y)*self.gridSize
|
||||
return ( x, y )
|
||||
|
||||
# Fixes some TK issue with off-center circles
|
||||
def to_screen2(self, point):
|
||||
( x, y ) = point
|
||||
#y = self.height - y
|
||||
x = (x + 1)*self.gridSize
|
||||
y = (self.height - y)*self.gridSize
|
||||
return ( x, y )
|
||||
|
||||
def drawWalls(self, wallMatrix):
|
||||
wallColor = WALL_COLOR
|
||||
for xNum, x in enumerate(wallMatrix):
|
||||
if self.capture and (xNum * 2) < wallMatrix.width: wallColor = TEAM_COLORS[0]
|
||||
if self.capture and (xNum * 2) >= wallMatrix.width: wallColor = TEAM_COLORS[1]
|
||||
|
||||
for yNum, cell in enumerate(x):
|
||||
if cell: # There's a wall here
|
||||
pos = (xNum, yNum)
|
||||
screen = self.to_screen(pos)
|
||||
screen2 = self.to_screen2(pos)
|
||||
|
||||
# draw each quadrant of the square based on adjacent walls
|
||||
wIsWall = self.isWall(xNum-1, yNum, wallMatrix)
|
||||
eIsWall = self.isWall(xNum+1, yNum, wallMatrix)
|
||||
nIsWall = self.isWall(xNum, yNum+1, wallMatrix)
|
||||
sIsWall = self.isWall(xNum, yNum-1, wallMatrix)
|
||||
nwIsWall = self.isWall(xNum-1, yNum+1, wallMatrix)
|
||||
swIsWall = self.isWall(xNum-1, yNum-1, wallMatrix)
|
||||
neIsWall = self.isWall(xNum+1, yNum+1, wallMatrix)
|
||||
seIsWall = self.isWall(xNum+1, yNum-1, wallMatrix)
|
||||
|
||||
# NE quadrant
|
||||
if (not nIsWall) and (not eIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (0,91), 'arc')
|
||||
if (nIsWall) and (not eIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
|
||||
if (not nIsWall) and (eIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
if (nIsWall) and (eIsWall) and (not neIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (180,271), 'arc')
|
||||
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
|
||||
|
||||
# NW quadrant
|
||||
if (not nIsWall) and (not wIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (90,181), 'arc')
|
||||
if (nIsWall) and (not wIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5)-1)), wallColor)
|
||||
if (not nIsWall) and (wIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
if (nIsWall) and (wIsWall) and (not nwIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (270,361), 'arc')
|
||||
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(-1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(-1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-2)*WALL_RADIUS+1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(-0.5))), wallColor)
|
||||
|
||||
# SE quadrant
|
||||
if (not sIsWall) and (not eIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (270,361), 'arc')
|
||||
if (sIsWall) and (not eIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, 0)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
|
||||
if (not sIsWall) and (eIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5+1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
if (sIsWall) and (eIsWall) and (not seIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*2*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (90,181), 'arc')
|
||||
line(add(screen, (self.gridSize*2*WALL_RADIUS-1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*0.5, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
|
||||
|
||||
# SW quadrant
|
||||
if (not sIsWall) and (not wIsWall):
|
||||
# inner circle
|
||||
circle(screen2, WALL_RADIUS * self.gridSize, wallColor, wallColor, (180,271), 'arc')
|
||||
if (sIsWall) and (not wIsWall):
|
||||
# vertical line
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, 0)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5)+1)), wallColor)
|
||||
if (not sIsWall) and (wIsWall):
|
||||
# horizontal line
|
||||
line(add(screen, (0, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5)-1, self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
if (sIsWall) and (wIsWall) and (not swIsWall):
|
||||
# outer circle
|
||||
circle(add(screen2, (self.gridSize*(-2)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS)), WALL_RADIUS * self.gridSize-1, wallColor, wallColor, (0,91), 'arc')
|
||||
line(add(screen, (self.gridSize*(-2)*WALL_RADIUS+1, self.gridSize*(1)*WALL_RADIUS)), add(screen, (self.gridSize*(-0.5), self.gridSize*(1)*WALL_RADIUS)), wallColor)
|
||||
line(add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(2)*WALL_RADIUS-1)), add(screen, (self.gridSize*(-1)*WALL_RADIUS, self.gridSize*(0.5))), wallColor)
|
||||
|
||||
def isWall(self, x, y, walls):
|
||||
if x < 0 or y < 0:
|
||||
return False
|
||||
if x >= walls.width or y >= walls.height:
|
||||
return False
|
||||
return walls[x][y]
|
||||
|
||||
def drawFood(self, foodMatrix ):
|
||||
foodImages = []
|
||||
color = FOOD_COLOR
|
||||
for xNum, x in enumerate(foodMatrix):
|
||||
if self.capture and (xNum * 2) <= foodMatrix.width: color = TEAM_COLORS[0]
|
||||
if self.capture and (xNum * 2) > foodMatrix.width: color = TEAM_COLORS[1]
|
||||
imageRow = []
|
||||
foodImages.append(imageRow)
|
||||
for yNum, cell in enumerate(x):
|
||||
if cell: # There's food here
|
||||
screen = self.to_screen((xNum, yNum ))
|
||||
dot = circle( screen,
|
||||
FOOD_SIZE * self.gridSize,
|
||||
outlineColor = color, fillColor = color,
|
||||
width = 1)
|
||||
imageRow.append(dot)
|
||||
else:
|
||||
imageRow.append(None)
|
||||
return foodImages
|
||||
|
||||
def drawCapsules(self, capsules ):
|
||||
capsuleImages = {}
|
||||
for capsule in capsules:
|
||||
( screen_x, screen_y ) = self.to_screen(capsule)
|
||||
dot = circle( (screen_x, screen_y),
|
||||
CAPSULE_SIZE * self.gridSize,
|
||||
outlineColor = CAPSULE_COLOR,
|
||||
fillColor = CAPSULE_COLOR,
|
||||
width = 1)
|
||||
capsuleImages[capsule] = dot
|
||||
return capsuleImages
|
||||
|
||||
def removeFood(self, cell, foodImages ):
|
||||
x, y = cell
|
||||
remove_from_screen(foodImages[x][y])
|
||||
|
||||
def removeCapsule(self, cell, capsuleImages ):
|
||||
x, y = cell
|
||||
remove_from_screen(capsuleImages[(x, y)])
|
||||
|
||||
def drawExpandedCells(self, cells):
|
||||
"""
|
||||
Draws an overlay of expanded grid positions for search agents
|
||||
"""
|
||||
n = float(len(cells))
|
||||
baseColor = [1.0, 0.0, 0.0]
|
||||
self.clearExpandedCells()
|
||||
self.expandedCells = []
|
||||
for k, cell in enumerate(cells):
|
||||
screenPos = self.to_screen( cell)
|
||||
cellColor = formatColor(*[(n-k) * c * .5 / n + .25 for c in baseColor])
|
||||
block = square(screenPos,
|
||||
0.5 * self.gridSize,
|
||||
color = cellColor,
|
||||
filled = 1, behind=2)
|
||||
self.expandedCells.append(block)
|
||||
if self.frameTime < 0:
|
||||
refresh()
|
||||
|
||||
def clearExpandedCells(self):
|
||||
if 'expandedCells' in dir(self) and len(self.expandedCells) > 0:
|
||||
for cell in self.expandedCells:
|
||||
remove_from_screen(cell)
|
||||
|
||||
|
||||
def updateDistributions(self, distributions):
|
||||
"Draws an agent's belief distributions"
|
||||
# copy all distributions so we don't change their state
|
||||
distributions = map(lambda x: x.copy(), distributions)
|
||||
if self.distributionImages == None:
|
||||
self.drawDistributions(self.previousState)
|
||||
for x in range(len(self.distributionImages)):
|
||||
for y in range(len(self.distributionImages[0])):
|
||||
image = self.distributionImages[x][y]
|
||||
weights = [dist[ (x,y) ] for dist in distributions]
|
||||
|
||||
if sum(weights) != 0:
|
||||
pass
|
||||
# Fog of war
|
||||
color = [0.0,0.0,0.0]
|
||||
colors = GHOST_VEC_COLORS[1:] # With Pacman
|
||||
if self.capture: colors = GHOST_VEC_COLORS
|
||||
for weight, gcolor in zip(weights, colors):
|
||||
color = [min(1.0, c + 0.95 * g * weight ** .3) for c,g in zip(color, gcolor)]
|
||||
changeColor(image, formatColor(*color))
|
||||
refresh()
|
||||
|
||||
class FirstPersonPacmanGraphics(PacmanGraphics):
|
||||
def __init__(self, zoom = 1.0, showGhosts = True, capture = False, frameTime=0):
|
||||
PacmanGraphics.__init__(self, zoom, frameTime=frameTime)
|
||||
self.showGhosts = showGhosts
|
||||
self.capture = capture
|
||||
|
||||
def initialize(self, state, isBlue = False):
|
||||
|
||||
self.isBlue = isBlue
|
||||
PacmanGraphics.startGraphics(self, state)
|
||||
# Initialize distribution images
|
||||
walls = state.layout.walls
|
||||
dist = []
|
||||
self.layout = state.layout
|
||||
|
||||
# Draw the rest
|
||||
self.distributionImages = None # initialize lazily
|
||||
self.drawStaticObjects(state)
|
||||
self.drawAgentObjects(state)
|
||||
|
||||
# Information
|
||||
self.previousState = state
|
||||
|
||||
def lookAhead(self, config, state):
|
||||
if config.getDirection() == 'Stop':
|
||||
return
|
||||
else:
|
||||
pass
|
||||
# Draw relevant ghosts
|
||||
allGhosts = state.getGhostStates()
|
||||
visibleGhosts = state.getVisibleGhosts()
|
||||
for i, ghost in enumerate(allGhosts):
|
||||
if ghost in visibleGhosts:
|
||||
self.drawGhost(ghost, i)
|
||||
else:
|
||||
self.currentGhostImages[i] = None
|
||||
|
||||
def getGhostColor(self, ghost, ghostIndex):
|
||||
return GHOST_COLORS[ghostIndex]
|
||||
|
||||
def getPosition(self, ghostState):
|
||||
if not self.showGhosts and not ghostState.isPacman and ghostState.getPosition()[1] > 1:
|
||||
return (-1000, -1000)
|
||||
else:
|
||||
return PacmanGraphics.getPosition(self, ghostState)
|
||||
|
||||
def add(x, y):
|
||||
return (x[0] + y[0], x[1] + y[1])
|
||||
|
||||
|
||||
# Saving graphical output
|
||||
# -----------------------
|
||||
# Note: to make an animated gif from this postscript output, try the command:
|
||||
# convert -delay 7 -loop 1 -compress lzw -layers optimize frame* out.gif
|
||||
# convert is part of imagemagick (freeware)
|
||||
|
||||
SAVE_POSTSCRIPT = False
|
||||
POSTSCRIPT_OUTPUT_DIR = 'frames'
|
||||
FRAME_NUMBER = 0
|
||||
import os
|
||||
|
||||
def saveFrame():
|
||||
"Saves the current graphical output as a postscript file"
|
||||
global SAVE_POSTSCRIPT, FRAME_NUMBER, POSTSCRIPT_OUTPUT_DIR
|
||||
if not SAVE_POSTSCRIPT: return
|
||||
if not os.path.exists(POSTSCRIPT_OUTPUT_DIR): os.mkdir(POSTSCRIPT_OUTPUT_DIR)
|
||||
name = os.path.join(POSTSCRIPT_OUTPUT_DIR, 'frame_%08d.ps' % FRAME_NUMBER)
|
||||
FRAME_NUMBER += 1
|
||||
writePostscript(name) # writes the current canvas
|
@ -0,0 +1,402 @@
|
||||
# graphicsUtils.py
|
||||
# ----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import string
|
||||
import time
|
||||
import types
|
||||
import tkinter
|
||||
import os.path
|
||||
|
||||
_Windows = sys.platform == 'win32' # True if on Win95/98/NT
|
||||
|
||||
_root_window = None # The root window for graphics output
|
||||
_canvas = None # The canvas which holds graphics
|
||||
_canvas_xs = None # Size of canvas object
|
||||
_canvas_ys = None
|
||||
_canvas_x = None # Current position on canvas
|
||||
_canvas_y = None
|
||||
_canvas_col = None # Current colour (set to black below)
|
||||
_canvas_tsize = 12
|
||||
_canvas_tserifs = 0
|
||||
|
||||
def formatColor(r, g, b):
|
||||
return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))
|
||||
|
||||
def colorToVector(color):
|
||||
return list(map(lambda x: int(x, 16) / 256.0, [color[1:3], color[3:5], color[5:7]]))
|
||||
|
||||
if _Windows:
|
||||
_canvas_tfonts = ['times new roman', 'lucida console']
|
||||
else:
|
||||
_canvas_tfonts = ['times', 'lucidasans-24']
|
||||
pass # XXX need defaults here
|
||||
|
||||
def sleep(secs):
|
||||
global _root_window
|
||||
if _root_window == None:
|
||||
time.sleep(secs)
|
||||
else:
|
||||
_root_window.update_idletasks()
|
||||
_root_window.after(int(1000 * secs), _root_window.quit)
|
||||
_root_window.mainloop()
|
||||
|
||||
def begin_graphics(width=640, height=480, color=formatColor(0, 0, 0), title=None):
|
||||
|
||||
global _root_window, _canvas, _canvas_x, _canvas_y, _canvas_xs, _canvas_ys, _bg_color
|
||||
|
||||
# Check for duplicate call
|
||||
if _root_window is not None:
|
||||
# Lose the window.
|
||||
_root_window.destroy()
|
||||
|
||||
# Save the canvas size parameters
|
||||
_canvas_xs, _canvas_ys = width - 1, height - 1
|
||||
_canvas_x, _canvas_y = 0, _canvas_ys
|
||||
_bg_color = color
|
||||
|
||||
# Create the root window
|
||||
_root_window = tkinter.Tk()
|
||||
_root_window.protocol('WM_DELETE_WINDOW', _destroy_window)
|
||||
_root_window.title(title or 'Graphics Window')
|
||||
_root_window.resizable(0, 0)
|
||||
|
||||
# Create the canvas object
|
||||
try:
|
||||
_canvas = tkinter.Canvas(_root_window, width=width, height=height)
|
||||
_canvas.pack()
|
||||
draw_background()
|
||||
_canvas.update()
|
||||
except:
|
||||
_root_window = None
|
||||
raise
|
||||
|
||||
# Bind to key-down and key-up events
|
||||
_root_window.bind( "<KeyPress>", _keypress )
|
||||
_root_window.bind( "<KeyRelease>", _keyrelease )
|
||||
_root_window.bind( "<FocusIn>", _clear_keys )
|
||||
_root_window.bind( "<FocusOut>", _clear_keys )
|
||||
_root_window.bind( "<Button-1>", _leftclick )
|
||||
_root_window.bind( "<Button-2>", _rightclick )
|
||||
_root_window.bind( "<Button-3>", _rightclick )
|
||||
_root_window.bind( "<Control-Button-1>", _ctrl_leftclick)
|
||||
_clear_keys()
|
||||
|
||||
_leftclick_loc = None
|
||||
_rightclick_loc = None
|
||||
_ctrl_leftclick_loc = None
|
||||
|
||||
def _leftclick(event):
|
||||
global _leftclick_loc
|
||||
_leftclick_loc = (event.x, event.y)
|
||||
|
||||
def _rightclick(event):
|
||||
global _rightclick_loc
|
||||
_rightclick_loc = (event.x, event.y)
|
||||
|
||||
def _ctrl_leftclick(event):
|
||||
global _ctrl_leftclick_loc
|
||||
_ctrl_leftclick_loc = (event.x, event.y)
|
||||
|
||||
def wait_for_click():
|
||||
while True:
|
||||
global _leftclick_loc
|
||||
global _rightclick_loc
|
||||
global _ctrl_leftclick_loc
|
||||
if _leftclick_loc != None:
|
||||
val = _leftclick_loc
|
||||
_leftclick_loc = None
|
||||
return val, 'left'
|
||||
if _rightclick_loc != None:
|
||||
val = _rightclick_loc
|
||||
_rightclick_loc = None
|
||||
return val, 'right'
|
||||
if _ctrl_leftclick_loc != None:
|
||||
val = _ctrl_leftclick_loc
|
||||
_ctrl_leftclick_loc = None
|
||||
return val, 'ctrl_left'
|
||||
sleep(0.05)
|
||||
|
||||
def draw_background():
|
||||
corners = [(0,0), (0, _canvas_ys), (_canvas_xs, _canvas_ys), (_canvas_xs, 0)]
|
||||
polygon(corners, _bg_color, fillColor=_bg_color, filled=True, smoothed=False)
|
||||
|
||||
def _destroy_window(event=None):
|
||||
sys.exit(0)
|
||||
# global _root_window
|
||||
# _root_window.destroy()
|
||||
# _root_window = None
|
||||
#print("DESTROY")
|
||||
|
||||
def end_graphics():
|
||||
global _root_window, _canvas, _mouse_enabled
|
||||
try:
|
||||
try:
|
||||
sleep(1)
|
||||
if _root_window != None:
|
||||
_root_window.destroy()
|
||||
except SystemExit as e:
|
||||
print('Ending graphics raised an exception:', e)
|
||||
finally:
|
||||
_root_window = None
|
||||
_canvas = None
|
||||
_mouse_enabled = 0
|
||||
_clear_keys()
|
||||
|
||||
def clear_screen(background=None):
|
||||
global _canvas_x, _canvas_y
|
||||
_canvas.delete('all')
|
||||
draw_background()
|
||||
_canvas_x, _canvas_y = 0, _canvas_ys
|
||||
|
||||
def polygon(coords, outlineColor, fillColor=None, filled=1, smoothed=1, behind=0, width=1):
|
||||
c = []
|
||||
for coord in coords:
|
||||
c.append(coord[0])
|
||||
c.append(coord[1])
|
||||
if fillColor == None: fillColor = outlineColor
|
||||
if filled == 0: fillColor = ""
|
||||
poly = _canvas.create_polygon(c, outline=outlineColor, fill=fillColor, smooth=smoothed, width=width)
|
||||
if behind > 0:
|
||||
_canvas.tag_lower(poly, behind) # Higher should be more visible
|
||||
return poly
|
||||
|
||||
def square(pos, r, color, filled=1, behind=0):
|
||||
x, y = pos
|
||||
coords = [(x - r, y - r), (x + r, y - r), (x + r, y + r), (x - r, y + r)]
|
||||
return polygon(coords, color, color, filled, 0, behind=behind)
|
||||
|
||||
def circle(pos, r, outlineColor, fillColor=None, endpoints=None, style='pieslice', width=2):
|
||||
x, y = pos
|
||||
x0, x1 = x - r - 1, x + r
|
||||
y0, y1 = y - r - 1, y + r
|
||||
if endpoints == None:
|
||||
e = [0, 359]
|
||||
else:
|
||||
e = list(endpoints)
|
||||
while e[0] > e[1]: e[1] = e[1] + 360
|
||||
|
||||
return _canvas.create_arc(x0, y0, x1, y1, outline=outlineColor, fill=fillColor or outlineColor,
|
||||
extent=e[1] - e[0], start=e[0], style=style, width=width)
|
||||
|
||||
def image(pos, file="../../blueghost.gif"):
|
||||
x, y = pos
|
||||
# img = PhotoImage(file=file)
|
||||
return _canvas.create_image(x, y, image = tkinter.PhotoImage(file=file), anchor = tkinter.NW)
|
||||
|
||||
|
||||
def refresh():
|
||||
_canvas.update_idletasks()
|
||||
|
||||
def moveCircle(id, pos, r, endpoints=None):
|
||||
global _canvas_x, _canvas_y
|
||||
|
||||
x, y = pos
|
||||
# x0, x1 = x - r, x + r + 1
|
||||
# y0, y1 = y - r, y + r + 1
|
||||
x0, x1 = x - r - 1, x + r
|
||||
y0, y1 = y - r - 1, y + r
|
||||
if endpoints == None:
|
||||
e = [0, 359]
|
||||
else:
|
||||
e = list(endpoints)
|
||||
while e[0] > e[1]: e[1] = e[1] + 360
|
||||
|
||||
if os.path.isfile('flag'):
|
||||
edit(id, ('extent', e[1] - e[0]))
|
||||
else:
|
||||
edit(id, ('start', e[0]), ('extent', e[1] - e[0]))
|
||||
move_to(id, x0, y0)
|
||||
|
||||
def edit(id, *args):
|
||||
_canvas.itemconfigure(id, **dict(args))
|
||||
|
||||
def text(pos, color, contents, font='Helvetica', size=12, style='normal', anchor="nw"):
|
||||
global _canvas_x, _canvas_y
|
||||
x, y = pos
|
||||
font = (font, str(size), style)
|
||||
return _canvas.create_text(x, y, fill=color, text=contents, font=font, anchor=anchor)
|
||||
|
||||
def changeText(id, newText, font=None, size=12, style='normal'):
|
||||
_canvas.itemconfigure(id, text=newText)
|
||||
if font != None:
|
||||
_canvas.itemconfigure(id, font=(font, '-%d' % size, style))
|
||||
|
||||
def changeColor(id, newColor):
|
||||
_canvas.itemconfigure(id, fill=newColor)
|
||||
|
||||
def line(here, there, color=formatColor(0, 0, 0), width=2):
|
||||
x0, y0 = here[0], here[1]
|
||||
x1, y1 = there[0], there[1]
|
||||
return _canvas.create_line(x0, y0, x1, y1, fill=color, width=width)
|
||||
|
||||
##############################################################################
|
||||
### Keypress handling ########################################################
|
||||
##############################################################################
|
||||
|
||||
# We bind to key-down and key-up events.
|
||||
|
||||
_keysdown = {}
|
||||
_keyswaiting = {}
|
||||
# This holds an unprocessed key release. We delay key releases by up to
|
||||
# one call to keys_pressed() to get round a problem with auto repeat.
|
||||
_got_release = None
|
||||
|
||||
def _keypress(event):
|
||||
global _got_release
|
||||
#remap_arrows(event)
|
||||
_keysdown[event.keysym] = 1
|
||||
_keyswaiting[event.keysym] = 1
|
||||
# print(event.char, event.keycode)
|
||||
_got_release = None
|
||||
|
||||
def _keyrelease(event):
|
||||
global _got_release
|
||||
#remap_arrows(event)
|
||||
try:
|
||||
del _keysdown[event.keysym]
|
||||
except:
|
||||
pass
|
||||
_got_release = 1
|
||||
|
||||
def remap_arrows(event):
|
||||
# TURN ARROW PRESSES INTO LETTERS (SHOULD BE IN KEYBOARD AGENT)
|
||||
if event.char in ['a', 's', 'd', 'w']:
|
||||
return
|
||||
if event.keycode in [37, 101]: # LEFT ARROW (win / x)
|
||||
event.char = 'a'
|
||||
if event.keycode in [38, 99]: # UP ARROW
|
||||
event.char = 'w'
|
||||
if event.keycode in [39, 102]: # RIGHT ARROW
|
||||
event.char = 'd'
|
||||
if event.keycode in [40, 104]: # DOWN ARROW
|
||||
event.char = 's'
|
||||
|
||||
def _clear_keys(event=None):
|
||||
global _keysdown, _got_release, _keyswaiting
|
||||
_keysdown = {}
|
||||
_keyswaiting = {}
|
||||
_got_release = None
|
||||
|
||||
def keys_pressed(d_o_e=lambda arg: _root_window.dooneevent(arg),
|
||||
d_w=tkinter._tkinter.DONT_WAIT):
|
||||
d_o_e(d_w)
|
||||
if _got_release:
|
||||
d_o_e(d_w)
|
||||
return _keysdown.keys()
|
||||
|
||||
def keys_waiting():
|
||||
global _keyswaiting
|
||||
keys = _keyswaiting.keys()
|
||||
_keyswaiting = {}
|
||||
return keys
|
||||
|
||||
# Block for a list of keys...
|
||||
|
||||
def wait_for_keys():
|
||||
keys = []
|
||||
while keys == []:
|
||||
keys = keys_pressed()
|
||||
sleep(0.05)
|
||||
return keys
|
||||
|
||||
def remove_from_screen(x,
|
||||
d_o_e=lambda arg: _root_window.dooneevent(arg),
|
||||
d_w=tkinter._tkinter.DONT_WAIT):
|
||||
_canvas.delete(x)
|
||||
d_o_e(d_w)
|
||||
|
||||
def _adjust_coords(coord_list, x, y):
|
||||
for i in range(0, len(coord_list), 2):
|
||||
coord_list[i] = coord_list[i] + x
|
||||
coord_list[i + 1] = coord_list[i + 1] + y
|
||||
return coord_list
|
||||
|
||||
def move_to(object, x, y=None,
|
||||
d_o_e=lambda arg: _root_window.dooneevent(arg),
|
||||
d_w=tkinter._tkinter.DONT_WAIT):
|
||||
if y is None:
|
||||
try: x, y = x
|
||||
except: raise 'incomprehensible coordinates'
|
||||
|
||||
horiz = True
|
||||
newCoords = []
|
||||
current_x, current_y = _canvas.coords(object)[0:2] # first point
|
||||
for coord in _canvas.coords(object):
|
||||
if horiz:
|
||||
inc = x - current_x
|
||||
else:
|
||||
inc = y - current_y
|
||||
horiz = not horiz
|
||||
|
||||
newCoords.append(coord + inc)
|
||||
|
||||
_canvas.coords(object, *newCoords)
|
||||
d_o_e(d_w)
|
||||
|
||||
def move_by(object, x, y=None,
|
||||
d_o_e=lambda arg: _root_window.dooneevent(arg),
|
||||
d_w=tkinter._tkinter.DONT_WAIT, lift=False):
|
||||
if y is None:
|
||||
try: x, y = x
|
||||
except: raise Exception('incomprehensible coordinates')
|
||||
|
||||
horiz = True
|
||||
newCoords = []
|
||||
for coord in _canvas.coords(object):
|
||||
if horiz:
|
||||
inc = x
|
||||
else:
|
||||
inc = y
|
||||
horiz = not horiz
|
||||
|
||||
newCoords.append(coord + inc)
|
||||
|
||||
_canvas.coords(object, *newCoords)
|
||||
d_o_e(d_w)
|
||||
if lift:
|
||||
_canvas.tag_raise(object)
|
||||
|
||||
def writePostscript(filename):
|
||||
"Writes the current canvas to a postscript file."
|
||||
psfile = open(filename, 'w')
|
||||
psfile.write(_canvas.postscript(pageanchor='sw',
|
||||
y='0.c',
|
||||
x='0.c'))
|
||||
psfile.close()
|
||||
|
||||
ghost_shape = [
|
||||
(0, - 0.5),
|
||||
(0.25, - 0.75),
|
||||
(0.5, - 0.5),
|
||||
(0.75, - 0.75),
|
||||
(0.75, 0.5),
|
||||
(0.5, 0.75),
|
||||
(- 0.5, 0.75),
|
||||
(- 0.75, 0.5),
|
||||
(- 0.75, - 0.75),
|
||||
(- 0.5, - 0.5),
|
||||
(- 0.25, - 0.75)
|
||||
]
|
||||
|
||||
if __name__ == '__main__':
|
||||
begin_graphics()
|
||||
clear_screen()
|
||||
ghost_shape = [(x * 10 + 20, y * 10 + 20) for x, y in ghost_shape]
|
||||
g = polygon(ghost_shape, formatColor(1, 1, 1))
|
||||
move_to(g, (50, 50))
|
||||
circle((150, 150), 20, formatColor(0.7, 0.3, 0.0), endpoints=[15, - 15])
|
||||
sleep(2)
|
@ -0,0 +1,84 @@
|
||||
# keyboardAgents.py
|
||||
# -----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from game import Agent
|
||||
from game import Directions
|
||||
import random
|
||||
|
||||
class KeyboardAgent(Agent):
|
||||
"""
|
||||
An agent controlled by the keyboard.
|
||||
"""
|
||||
# NOTE: Arrow keys also work.
|
||||
WEST_KEY = 'a'
|
||||
EAST_KEY = 'd'
|
||||
NORTH_KEY = 'w'
|
||||
SOUTH_KEY = 's'
|
||||
STOP_KEY = 'q'
|
||||
|
||||
def __init__( self, index = 0 ):
|
||||
|
||||
self.lastMove = Directions.STOP
|
||||
self.index = index
|
||||
self.keys = []
|
||||
|
||||
def getAction( self, state):
|
||||
from graphicsUtils import keys_waiting
|
||||
from graphicsUtils import keys_pressed
|
||||
keys = list(keys_waiting()) + list(keys_pressed())
|
||||
if keys != []:
|
||||
self.keys = keys
|
||||
|
||||
legal = state.getLegalActions(self.index)
|
||||
move = self.getMove(legal)
|
||||
|
||||
if move == Directions.STOP:
|
||||
# Try to move in the same direction as before
|
||||
if self.lastMove in legal:
|
||||
move = self.lastMove
|
||||
|
||||
if (self.STOP_KEY in self.keys) and Directions.STOP in legal: move = Directions.STOP
|
||||
|
||||
if move not in legal:
|
||||
move = random.choice(legal)
|
||||
|
||||
self.lastMove = move
|
||||
return move
|
||||
|
||||
def getMove(self, legal):
|
||||
move = Directions.STOP
|
||||
if (self.WEST_KEY in self.keys or 'Left' in self.keys) and Directions.WEST in legal: move = Directions.WEST
|
||||
if (self.EAST_KEY in self.keys or 'Right' in self.keys) and Directions.EAST in legal: move = Directions.EAST
|
||||
if (self.NORTH_KEY in self.keys or 'Up' in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
|
||||
if (self.SOUTH_KEY in self.keys or 'Down' in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
|
||||
return move
|
||||
|
||||
class KeyboardAgent2(KeyboardAgent):
|
||||
"""
|
||||
A second agent controlled by the keyboard.
|
||||
"""
|
||||
# NOTE: Arrow keys also work.
|
||||
WEST_KEY = 'j'
|
||||
EAST_KEY = "l"
|
||||
NORTH_KEY = 'i'
|
||||
SOUTH_KEY = 'k'
|
||||
STOP_KEY = 'u'
|
||||
|
||||
def getMove(self, legal):
|
||||
move = Directions.STOP
|
||||
if (self.WEST_KEY in self.keys) and Directions.WEST in legal: move = Directions.WEST
|
||||
if (self.EAST_KEY in self.keys) and Directions.EAST in legal: move = Directions.EAST
|
||||
if (self.NORTH_KEY in self.keys) and Directions.NORTH in legal: move = Directions.NORTH
|
||||
if (self.SOUTH_KEY in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH
|
||||
return move
|
@ -0,0 +1,150 @@
|
||||
# layout.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from util import manhattanDistance
|
||||
from game import Grid
|
||||
import os
|
||||
import random
|
||||
from functools import reduce
|
||||
|
||||
VISIBILITY_MATRIX_CACHE = {}
|
||||
|
||||
class Layout:
|
||||
"""
|
||||
A Layout manages the static information about the game board.
|
||||
"""
|
||||
|
||||
def __init__(self, layoutText):
|
||||
self.width = len(layoutText[0])
|
||||
self.height= len(layoutText)
|
||||
self.walls = Grid(self.width, self.height, False)
|
||||
self.food = Grid(self.width, self.height, False)
|
||||
self.capsules = []
|
||||
self.agentPositions = []
|
||||
self.numGhosts = 0
|
||||
self.processLayoutText(layoutText)
|
||||
self.layoutText = layoutText
|
||||
self.totalFood = len(self.food.asList())
|
||||
# self.initializeVisibilityMatrix()
|
||||
|
||||
def getNumGhosts(self):
|
||||
return self.numGhosts
|
||||
|
||||
def initializeVisibilityMatrix(self):
|
||||
global VISIBILITY_MATRIX_CACHE
|
||||
if reduce(str.__add__, self.layoutText) not in VISIBILITY_MATRIX_CACHE:
|
||||
from game import Directions
|
||||
vecs = [(-0.5,0), (0.5,0),(0,-0.5),(0,0.5)]
|
||||
dirs = [Directions.NORTH, Directions.SOUTH, Directions.WEST, Directions.EAST]
|
||||
vis = Grid(self.width, self.height, {Directions.NORTH:set(), Directions.SOUTH:set(), Directions.EAST:set(), Directions.WEST:set(), Directions.STOP:set()})
|
||||
for x in range(self.width):
|
||||
for y in range(self.height):
|
||||
if self.walls[x][y] == False:
|
||||
for vec, direction in zip(vecs, dirs):
|
||||
dx, dy = vec
|
||||
nextx, nexty = x + dx, y + dy
|
||||
while (nextx + nexty) != int(nextx) + int(nexty) or not self.walls[int(nextx)][int(nexty)] :
|
||||
vis[x][y][direction].add((nextx, nexty))
|
||||
nextx, nexty = x + dx, y + dy
|
||||
self.visibility = vis
|
||||
VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)] = vis
|
||||
else:
|
||||
self.visibility = VISIBILITY_MATRIX_CACHE[reduce(str.__add__, self.layoutText)]
|
||||
|
||||
def isWall(self, pos):
|
||||
x, col = pos
|
||||
return self.walls[x][col]
|
||||
|
||||
def getRandomLegalPosition(self):
|
||||
x = random.choice(range(self.width))
|
||||
y = random.choice(range(self.height))
|
||||
while self.isWall( (x, y) ):
|
||||
x = random.choice(range(self.width))
|
||||
y = random.choice(range(self.height))
|
||||
return (x,y)
|
||||
|
||||
def getRandomCorner(self):
|
||||
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
|
||||
return random.choice(poses)
|
||||
|
||||
def getFurthestCorner(self, pacPos):
|
||||
poses = [(1,1), (1, self.height - 2), (self.width - 2, 1), (self.width - 2, self.height - 2)]
|
||||
dist, pos = max([(manhattanDistance(p, pacPos), p) for p in poses])
|
||||
return pos
|
||||
|
||||
def isVisibleFrom(self, ghostPos, pacPos, pacDirection):
|
||||
row, col = [int(x) for x in pacPos]
|
||||
return ghostPos in self.visibility[row][col][pacDirection]
|
||||
|
||||
def __str__(self):
|
||||
return "\n".join(self.layoutText)
|
||||
|
||||
def deepCopy(self):
|
||||
return Layout(self.layoutText[:])
|
||||
|
||||
def processLayoutText(self, layoutText):
|
||||
"""
|
||||
Coordinates are flipped from the input format to the (x,y) convention here
|
||||
|
||||
The shape of the maze. Each character
|
||||
represents a different type of object.
|
||||
% - Wall
|
||||
. - Food
|
||||
o - Capsule
|
||||
G - Ghost
|
||||
P - Pacman
|
||||
Other characters are ignored.
|
||||
"""
|
||||
maxY = self.height - 1
|
||||
for y in range(self.height):
|
||||
for x in range(self.width):
|
||||
layoutChar = layoutText[maxY - y][x]
|
||||
self.processLayoutChar(x, y, layoutChar)
|
||||
self.agentPositions.sort()
|
||||
self.agentPositions = [ ( i == 0, pos) for i, pos in self.agentPositions]
|
||||
|
||||
def processLayoutChar(self, x, y, layoutChar):
|
||||
if layoutChar == '%':
|
||||
self.walls[x][y] = True
|
||||
elif layoutChar == '.':
|
||||
self.food[x][y] = True
|
||||
elif layoutChar == 'o':
|
||||
self.capsules.append((x, y))
|
||||
elif layoutChar == 'P':
|
||||
self.agentPositions.append( (0, (x, y) ) )
|
||||
elif layoutChar in ['G']:
|
||||
self.agentPositions.append( (1, (x, y) ) )
|
||||
self.numGhosts += 1
|
||||
elif layoutChar in ['1', '2', '3', '4']:
|
||||
self.agentPositions.append( (int(layoutChar), (x,y)))
|
||||
self.numGhosts += 1
|
||||
def getLayout(name, back = 2):
|
||||
if name.endswith('.lay'):
|
||||
layout = tryToLoad('layouts/' + name)
|
||||
if layout == None: layout = tryToLoad(name)
|
||||
else:
|
||||
layout = tryToLoad('layouts/' + name + '.lay')
|
||||
if layout == None: layout = tryToLoad(name + '.lay')
|
||||
if layout == None and back >= 0:
|
||||
curdir = os.path.abspath('.')
|
||||
os.chdir('..')
|
||||
layout = getLayout(name, back -1)
|
||||
os.chdir(curdir)
|
||||
return layout
|
||||
|
||||
def tryToLoad(fullname):
|
||||
if(not os.path.exists(fullname)): return None
|
||||
f = open(fullname)
|
||||
try: return Layout([line.strip() for line in f])
|
||||
finally: f.close()
|
@ -0,0 +1,37 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%. % %.%
|
||||
% %%%%% % %%% %%% %%%%%%% % %
|
||||
% % % % % % % %
|
||||
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
|
||||
% % % % % % % % % % % % %
|
||||
% %%% % % % %%% %%%%% %%% % %%% %%% %
|
||||
% % % % % % % % %
|
||||
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
|
||||
% % % % % % %
|
||||
% % %%%%% % %%% % % %%% % %%% %%% % %
|
||||
% % % % % % % % % % % % % %
|
||||
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
|
||||
% % % % % % % % % %
|
||||
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
|
||||
% % % % % % % % %
|
||||
% % % % % % %%% %%% %%% % % % % % %
|
||||
% % % % % %% % % % % % % % % %
|
||||
% % %%%%% % %%% %%% % %%% %%% %%%%%
|
||||
% % % % % % % % % % %
|
||||
% %%% % % % %%% %%% %%%%%%%%% % %%%
|
||||
% % % % % % %
|
||||
% %%% %%%%%%%%%%%%%%%%%%%%% % % %%% %
|
||||
% % % %
|
||||
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
|
||||
% % % % % % % % % % % %
|
||||
% % %%% %%% % % % %%%%%%%%% %%% % % %
|
||||
% % % % % % %P % % % % % %
|
||||
% %%% %%% %%% % %%% % % %%%%% % %%%%%
|
||||
% % % % % % % %
|
||||
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
|
||||
% % % % % % % % % % % % % % %
|
||||
% % %%% % % % % %%%%%%%%% % % % % % %
|
||||
% % % %
|
||||
% % % %%% %%% %%%%%%% %%% %%% %%% %
|
||||
%.% % % % % .%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,37 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% % % % % % % %
|
||||
% %%%%%%% % %%% % %%% %%% %%%%%%% % %
|
||||
% % % % % % % %
|
||||
%%%%% %%%%% %%% % % % %%% %%%%% % %%%
|
||||
% % % % % % % % % % % % % %
|
||||
% %%% % % % %%% %%%%% %%% % %%% %%% %
|
||||
% % % % % % % % %
|
||||
%%% %%%%%%%%% %%%%%%% %%% %%% % % % %
|
||||
% % % % % % %
|
||||
% % %%%%% % %%% % % %%% % %%% %%% % %
|
||||
% % % % % % % % % % % % % %
|
||||
% % % %%%%%%% % %%%%%%%%% %%% % %%% %
|
||||
% % % % % % % % % %
|
||||
%%% %%% % %%%%% %%%%% %%% %%% %%%%% %
|
||||
% % % % % % % % % % % %
|
||||
% % % % % %%% %%% %%% %%% % % % % % %
|
||||
% % % % % % % % %
|
||||
%%% %%%%%%% % % %%%%% %%% % %%% %%%%%
|
||||
% % % % % % % % % %
|
||||
%%%%% % % %%%%%%%%% %%%%%%%%%%% % %%%
|
||||
% % % % % % % % %
|
||||
% %%% %%%%% %%%%%%%%% %%%%% % % %%% %
|
||||
% % % % % % %
|
||||
% % % %%%%% %%% % % % % %%%%%%%%%%%%%
|
||||
% % % % % % % % % % % %
|
||||
% % %%% %%% % % % %%%%%%%%% %%% % % %
|
||||
% % % % % % % % % % % % %
|
||||
% %%% %%% %%%%% %%% % % %%%%% % %%%%%
|
||||
% % % % % % % % %
|
||||
%%% % %%%%% %%%%% %%% %%% % %%% % %%%
|
||||
% % % % % % % % % % % % % % %
|
||||
% % %%% % % % % %%%%%%%%% % % % % % %
|
||||
% % % % % %
|
||||
% % % % %%% %%% %%%%%%% %%% %%% %%% %
|
||||
%.% % % % % % % % P%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.%.........%% G % o%%%%.....%
|
||||
%.%.%%%%%%%.%%%%%% %%%%%%%.%%.%
|
||||
%............%...%............%
|
||||
%%%%%...%%%.. ..%.%...%.%%%
|
||||
%o%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
|
||||
% ..........Po...%...%. o%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,15 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.....%.................%.....%
|
||||
%.%%%.%.%%%.%%%%%%%.%%%.%.....%
|
||||
%.%...%.%......%......%.%.....%
|
||||
%...%%%.%.%%%%.%.%%%%...%%%...%
|
||||
%%%.%.%.%.%......%..%.%...%.%%%
|
||||
%...%.%%%.%.%%% %%%.%.%%%.%...%
|
||||
%.%%%.......% %.......%%%.%
|
||||
%...%.%%%%%.%%%%%%%.%.%%%.%...%
|
||||
%%%.%...%.%....%....%.%...%.%%%
|
||||
%...%%%.%.%%%%.%.%%%%.%.%%%...%
|
||||
%.......%......%......%.....%.%
|
||||
%.....%.%%%.%%%%%%%.%%%.%.%%%.%
|
||||
%.....%........P....%...%.....%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,14 @@
|
||||
%%%%%%%%%%%%%%
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%. . . . . %G%
|
||||
% % %
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%. . . . . % %
|
||||
% P %G%
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%. . . . . % %
|
||||
% % %
|
||||
%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%
|
||||
%G. G ....%
|
||||
%.% % %%%%%% %.%%.%
|
||||
%.%o% % o% %.o%.%
|
||||
%.%%%.% %%% %..%.%
|
||||
%..... P %..%G%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,9 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%...o%
|
||||
%.%%.%.%%..%%.%.%%.%
|
||||
%...... G GG%......%
|
||||
%.%.%%.%% %%%.%%.%.%
|
||||
%.%....% ooo%.%..%.%
|
||||
%.%.%%.% %% %.%.%%.%
|
||||
%o%......P....%....%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,11 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
% P %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%. %
|
||||
%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%
|
||||
%....%
|
||||
% %%.%
|
||||
% %%.%
|
||||
%.P .%
|
||||
%.%%%%
|
||||
%....%
|
||||
%%%%%%
|
@ -0,0 +1,11 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%....%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%.%..............%.%
|
||||
%.%.%%.%% %%.%%.%.%
|
||||
%......%G G%......%
|
||||
%.%.%%.%%%%%%.%%.%.%
|
||||
%.%..............%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%....%...P....%...o%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,14 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%. % % % %.%
|
||||
% % % %%%%%% %%%%%%% % %
|
||||
% % % % % %
|
||||
%%%%% %%%%% %%% %% %%%%% % %%%
|
||||
% % % % % % % % %
|
||||
% %%% % % % %%%%%%%% %%% %%% %
|
||||
% % %% % % % %
|
||||
%%% % %%%%%%% %%%% %%% % % % %
|
||||
% % %% % % %
|
||||
% % %%%%% % %%%% % %%% %%% % %
|
||||
% % % % % % %%% %
|
||||
%. %P%%%%% % %%% % .%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,18 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
|
||||
% %% % % %%% %%% %% ... %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % % %% %% %% ... %
|
||||
% %% % % % % % %%%% %%% %%%%%% %
|
||||
% % % % % % %% %%%%%%%% ... %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% ... %
|
||||
% %%%%%% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % %%%% %% % ... %
|
||||
% %%%%%% %%%%% % %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%%%% %%%%%%%%%%% %% %% %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% ...... %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,18 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
|
||||
% %% % % %%%%%%% %% %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % %% %% %
|
||||
% %% % % % % % %%%% %%% %%%%%% %
|
||||
% % % % % % %% %%%%%%%% %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% %
|
||||
% %%%%%% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % %%%% %% % %
|
||||
% %%%%%% %%%%% % %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%%%% %%%%%%%%%%% %% %% %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,6 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.% ....%% G %%%%%% o%%.%
|
||||
%.%o%%%%%%%.%%%%%%% %%%%%.%
|
||||
% %%%.%%%%%.%%%%%%%.%%%.%.%%%.%
|
||||
% ..........Po...%.........%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,18 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%% %%% %%%%%%%% %
|
||||
% %% % % %%% %%% %%GG %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % % %%GG %% %
|
||||
% %% % % % % % %%%%% %%% %%%%%% %
|
||||
% %% % % % % %% %%%%%%%%% %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% %
|
||||
% %%% %% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % % %% %% %
|
||||
% %%%%%% %% %% %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%% %%%%% %%%%%% %
|
||||
%%%%%%%% % %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%............%%%%%............%
|
||||
%%%.%...%%%.........%.%...%.%%%
|
||||
%...%%%.%.%%%%.%.%%%%%%.%%%...%
|
||||
%.%.....%......%......%.....%.%
|
||||
%.%%%.%%%%%.%%%%%%%.%%%.%.%%%%%
|
||||
%.....%........P....%...%.....%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%%%%%
|
||||
%.P G%
|
||||
% %.%G%%%
|
||||
%G %%%
|
||||
%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%...%.........%%...%
|
||||
%.%.%.%%%%%%%%%%.%.%
|
||||
%..................%
|
||||
%%%%%%%%.%.%%%%%%%P%
|
||||
%%%%%%%%....... %
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,9 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%.. P .... .... %
|
||||
%.. ... ... ... ... %
|
||||
%.. ... ... ... ... %
|
||||
%.. .... .... G %
|
||||
%.. ... ... ... ... %
|
||||
%.. ... ... ... ... %
|
||||
%.. .... .... o%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,23 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
% % % %
|
||||
%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
|
||||
% % %
|
||||
% % %
|
||||
% % %
|
||||
% %
|
||||
% %
|
||||
% %
|
||||
%. %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%..................%
|
||||
%..................%
|
||||
%........P.........%
|
||||
%..................%
|
||||
%..................%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,27 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%............%%............%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%o%%%%.%%%%%.%%.%%%%%.%%%%o%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%..........................%
|
||||
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
|
||||
%.%%%%.%%.%%%%%%%%.%%.%%%%.%
|
||||
%......%%....%%....%%......%
|
||||
%%%%%%.%%%%% %% %%%%%.%%%%%%
|
||||
%%%%%%.%%%%% %% %%%%%.%%%%%%
|
||||
%%%%%%.% %.%%%%%%
|
||||
%%%%%%.% %%%% %%%% %.%%%%%%
|
||||
% . %G GG G% . %
|
||||
%%%%%%.% %%%%%%%%%% %.%%%%%%
|
||||
%%%%%%.% %.%%%%%%
|
||||
%%%%%%.% %%%%%%%%%% %.%%%%%%
|
||||
%............%%............%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%.%%%%.%%%%%.%%.%%%%%.%%%%.%
|
||||
%o..%%....... .......%%..o%
|
||||
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
|
||||
%%%.%%.%%.%%%%%%%%.%%.%%.%%%
|
||||
%......%%....%%....%%......%
|
||||
%.%%%%%%%%%%.%%.%%%%%%%%%%.%
|
||||
%.............P............%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o....o%GGGG%o....o%
|
||||
%..%...%% %%...%..%
|
||||
%.%o.%........%.o%.%
|
||||
%.o%.%.%%%%%%.%.%o.%
|
||||
%........P.........%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%......%G G%......%
|
||||
%.%%...%% %%...%%.%
|
||||
%.%o.%........%.o%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%........P.........%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,10 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %% % % %
|
||||
% %%%%%% % %%%%%% %
|
||||
%%%%%% P % %
|
||||
% % %%%%%% %% %%%%%
|
||||
% %%%% % % %
|
||||
% %%% %%% % %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,15 @@
|
||||
%%%%%%%%%
|
||||
%.. % G %
|
||||
%%% %%%%%
|
||||
% %
|
||||
%%%%%%% %
|
||||
% %
|
||||
% %%%%% %
|
||||
% % %
|
||||
%%%%% % %
|
||||
% %o%
|
||||
% %%%%%%%
|
||||
% .%
|
||||
%%%%%%%.%
|
||||
%Po .%
|
||||
%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%. ...P .%
|
||||
%.%%.%%.%%.%%.%% %.%
|
||||
% %% %..... %.%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,10 @@
|
||||
%%%%%
|
||||
% . %
|
||||
%.G.%
|
||||
% . %
|
||||
%. .%
|
||||
% %
|
||||
% .%
|
||||
% %
|
||||
%P .%
|
||||
%%%%%
|
@ -0,0 +1,3 @@
|
||||
%%%%%%%%%%
|
||||
%. P%
|
||||
%%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%
|
||||
%.P %
|
||||
%%% %
|
||||
%. %
|
||||
%%%%%
|
@ -0,0 +1,8 @@
|
||||
%%%%%%%%
|
||||
%. .%
|
||||
% P %
|
||||
% %%%% %
|
||||
% % %
|
||||
% % %%%%
|
||||
%.% .%
|
||||
%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%
|
||||
% P%
|
||||
% %%% %
|
||||
% % %
|
||||
%% %%
|
||||
%. %%%%
|
||||
%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%
|
||||
% G %...%
|
||||
%%%%%%% %
|
||||
%Po %
|
||||
%.%%.%%.%
|
||||
%.%%....%
|
||||
%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%
|
||||
%.. ..%
|
||||
%%%%.%% %
|
||||
% P %
|
||||
%.%% %%.%
|
||||
%.%. .%
|
||||
%%%%%%%%%
|
@ -0,0 +1,5 @@
|
||||
%%%%%%%%
|
||||
% P G%
|
||||
%G%%%%%%
|
||||
%.... %
|
||||
%%%%%%%%
|
@ -0,0 +1,13 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%o...%........%...o%
|
||||
%.%%.%.%%..%%.%.%%.%
|
||||
%.%.....%..%.....%.%
|
||||
%.%.%%.%% %%.%%.%.%
|
||||
%...... GGGG%.%....%
|
||||
%.%....%%%%%%.%..%.%
|
||||
%.%....% oo%.%..%.%
|
||||
%.%....% %%%%.%..%.%
|
||||
%.%...........%..%.%
|
||||
%.%%.%.%%%%%%.%.%%.%
|
||||
%o...%...P....%...o%
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,7 @@
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%. ..% %
|
||||
%.%%.%%.%%.%%.%% % %
|
||||
% P % %
|
||||
%%%%%%%%%%%%%%%%%% %
|
||||
%..... %
|
||||
%%%%%%%%%%%%%%%%%%%%
|
@ -0,0 +1,684 @@
|
||||
# pacman.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
Pacman.py holds the logic for the classic pacman game along with the main
|
||||
code to run a game. This file is divided into three sections:
|
||||
|
||||
(i) Your interface to the pacman world:
|
||||
Pacman is a complex environment. You probably don't want to
|
||||
read through all of the code we wrote to make the game runs
|
||||
correctly. This section contains the parts of the code
|
||||
that you will need to understand in order to complete the
|
||||
project. There is also some code in game.py that you should
|
||||
understand.
|
||||
|
||||
(ii) The hidden secrets of pacman:
|
||||
This section contains all of the logic code that the pacman
|
||||
environment uses to decide who can move where, who dies when
|
||||
things collide, etc. You shouldn't need to read this section
|
||||
of code, but you can if you want.
|
||||
|
||||
(iii) Framework to start a game:
|
||||
The final section contains the code for reading the command
|
||||
you use to set up the game, then starting up a new game, along with
|
||||
linking in all the external parts (agent functions, graphics).
|
||||
Check this section out to see all the options available to you.
|
||||
|
||||
To play your first game, type 'python pacman.py' from the command line.
|
||||
The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun!
|
||||
"""
|
||||
from game import GameStateData
|
||||
from game import Game
|
||||
from game import Directions
|
||||
from game import Actions
|
||||
from util import nearestPoint
|
||||
from util import manhattanDistance
|
||||
import util, layout
|
||||
import sys, types, time, random, os
|
||||
|
||||
###################################################
|
||||
# YOUR INTERFACE TO THE PACMAN WORLD: A GameState #
|
||||
###################################################
|
||||
|
||||
class GameState:
|
||||
"""
|
||||
A GameState specifies the full game state, including the food, capsules,
|
||||
agent configurations and score changes.
|
||||
|
||||
GameStates are used by the Game object to capture the actual state of the game and
|
||||
can be used by agents to reason about the game.
|
||||
|
||||
Much of the information in a GameState is stored in a GameStateData object. We
|
||||
strongly suggest that you access that data via the accessor methods below rather
|
||||
than referring to the GameStateData object directly.
|
||||
|
||||
Note that in classic Pacman, Pacman is always agent 0.
|
||||
"""
|
||||
|
||||
####################################################
|
||||
# Accessor methods: use these to access state data #
|
||||
####################################################
|
||||
|
||||
# static variable keeps track of which states have had getLegalActions called
|
||||
explored = set()
|
||||
def getAndResetExplored():
|
||||
tmp = GameState.explored.copy()
|
||||
GameState.explored = set()
|
||||
return tmp
|
||||
getAndResetExplored = staticmethod(getAndResetExplored)
|
||||
|
||||
def getLegalActions( self, agentIndex=0 ):
|
||||
"""
|
||||
Returns the legal actions for the agent specified.
|
||||
"""
|
||||
# GameState.explored.add(self)
|
||||
if self.isWin() or self.isLose(): return []
|
||||
|
||||
if agentIndex == 0: # Pacman is moving
|
||||
return PacmanRules.getLegalActions( self )
|
||||
else:
|
||||
return GhostRules.getLegalActions( self, agentIndex )
|
||||
|
||||
def generateSuccessor( self, agentIndex, action):
|
||||
"""
|
||||
Returns the successor state after the specified agent takes the action.
|
||||
"""
|
||||
# Check that successors exist
|
||||
if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.')
|
||||
|
||||
# Copy current state
|
||||
state = GameState(self)
|
||||
|
||||
# Let agent's logic deal with its action's effects on the board
|
||||
if agentIndex == 0: # Pacman is moving
|
||||
state.data._eaten = [False for i in range(state.getNumAgents())]
|
||||
PacmanRules.applyAction( state, action )
|
||||
else: # A ghost is moving
|
||||
GhostRules.applyAction( state, action, agentIndex )
|
||||
|
||||
# Time passes
|
||||
if agentIndex == 0:
|
||||
state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around
|
||||
else:
|
||||
GhostRules.decrementTimer( state.data.agentStates[agentIndex] )
|
||||
|
||||
# Resolve multi-agent effects
|
||||
GhostRules.checkDeath( state, agentIndex )
|
||||
|
||||
# Book keeping
|
||||
state.data._agentMoved = agentIndex
|
||||
state.data.score += state.data.scoreChange
|
||||
GameState.explored.add(self)
|
||||
GameState.explored.add(state)
|
||||
return state
|
||||
|
||||
def getLegalPacmanActions( self ):
|
||||
return self.getLegalActions( 0 )
|
||||
|
||||
def generatePacmanSuccessor( self, action ):
|
||||
"""
|
||||
Generates the successor state after the specified pacman move
|
||||
"""
|
||||
return self.generateSuccessor( 0, action )
|
||||
|
||||
def getPacmanState( self ):
|
||||
"""
|
||||
Returns an AgentState object for pacman (in game.py)
|
||||
|
||||
state.pos gives the current position
|
||||
state.direction gives the travel vector
|
||||
"""
|
||||
return self.data.agentStates[0].copy()
|
||||
|
||||
def getPacmanPosition( self ):
|
||||
return self.data.agentStates[0].getPosition()
|
||||
|
||||
def getGhostStates( self ):
|
||||
return self.data.agentStates[1:]
|
||||
|
||||
def getGhostState( self, agentIndex ):
|
||||
if agentIndex == 0 or agentIndex >= self.getNumAgents():
|
||||
raise Exception("Invalid index passed to getGhostState")
|
||||
return self.data.agentStates[agentIndex]
|
||||
|
||||
def getGhostPosition( self, agentIndex ):
|
||||
if agentIndex == 0:
|
||||
raise Exception("Pacman's index passed to getGhostPosition")
|
||||
return self.data.agentStates[agentIndex].getPosition()
|
||||
|
||||
def getGhostPositions(self):
|
||||
return [s.getPosition() for s in self.getGhostStates()]
|
||||
|
||||
def getNumAgents( self ):
|
||||
return len( self.data.agentStates )
|
||||
|
||||
def getScore( self ):
|
||||
return float(self.data.score)
|
||||
|
||||
def getCapsules(self):
|
||||
"""
|
||||
Returns a list of positions (x,y) of the remaining capsules.
|
||||
"""
|
||||
return self.data.capsules
|
||||
|
||||
def getNumFood( self ):
|
||||
return self.data.food.count()
|
||||
|
||||
def getFood(self):
|
||||
"""
|
||||
Returns a Grid of boolean food indicator variables.
|
||||
|
||||
Grids can be accessed via list notation, so to check
|
||||
if there is food at (x,y), just call
|
||||
|
||||
currentFood = state.getFood()
|
||||
if currentFood[x][y] == True: ...
|
||||
"""
|
||||
return self.data.food
|
||||
|
||||
def getWalls(self):
|
||||
"""
|
||||
Returns a Grid of boolean wall indicator variables.
|
||||
|
||||
Grids can be accessed via list notation, so to check
|
||||
if there is a wall at (x,y), just call
|
||||
|
||||
walls = state.getWalls()
|
||||
if walls[x][y] == True: ...
|
||||
"""
|
||||
return self.data.layout.walls
|
||||
|
||||
def hasFood(self, x, y):
|
||||
return self.data.food[x][y]
|
||||
|
||||
def hasWall(self, x, y):
|
||||
return self.data.layout.walls[x][y]
|
||||
|
||||
def isLose( self ):
|
||||
return self.data._lose
|
||||
|
||||
def isWin( self ):
|
||||
return self.data._win
|
||||
|
||||
#############################################
|
||||
# Helper methods: #
|
||||
# You shouldn't need to call these directly #
|
||||
#############################################
|
||||
|
||||
def __init__( self, prevState = None ):
|
||||
"""
|
||||
Generates a new state by copying information from its predecessor.
|
||||
"""
|
||||
if prevState != None: # Initial state
|
||||
self.data = GameStateData(prevState.data)
|
||||
else:
|
||||
self.data = GameStateData()
|
||||
|
||||
def deepCopy( self ):
|
||||
state = GameState( self )
|
||||
state.data = self.data.deepCopy()
|
||||
return state
|
||||
|
||||
def __eq__( self, other ):
|
||||
"""
|
||||
Allows two states to be compared.
|
||||
"""
|
||||
return hasattr(other, 'data') and self.data == other.data
|
||||
|
||||
def __hash__( self ):
|
||||
"""
|
||||
Allows states to be keys of dictionaries.
|
||||
"""
|
||||
return hash( self.data )
|
||||
|
||||
def __str__( self ):
|
||||
|
||||
return str(self.data)
|
||||
|
||||
def initialize( self, layout, numGhostAgents=1000 ):
|
||||
"""
|
||||
Creates an initial game state from a layout array (see layout.py).
|
||||
"""
|
||||
self.data.initialize(layout, numGhostAgents)
|
||||
|
||||
############################################################################
|
||||
# THE HIDDEN SECRETS OF PACMAN #
|
||||
# #
|
||||
# You shouldn't need to look through the code in this section of the file. #
|
||||
############################################################################
|
||||
|
||||
SCARED_TIME = 40 # Moves ghosts are scared
|
||||
COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill
|
||||
TIME_PENALTY = 1 # Number of points lost each round
|
||||
|
||||
class ClassicGameRules:
|
||||
"""
|
||||
These game rules manage the control flow of a game, deciding when
|
||||
and how the game starts and ends.
|
||||
"""
|
||||
def __init__(self, timeout=30):
|
||||
self.timeout = timeout
|
||||
|
||||
def newGame( self, layout, pacmanAgent, ghostAgents, display, quiet = False, catchExceptions=False):
|
||||
agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()]
|
||||
initState = GameState()
|
||||
initState.initialize( layout, len(ghostAgents) )
|
||||
game = Game(agents, display, self, catchExceptions=catchExceptions)
|
||||
game.state = initState
|
||||
self.initialState = initState.deepCopy()
|
||||
self.quiet = quiet
|
||||
return game
|
||||
|
||||
def process(self, state, game):
|
||||
"""
|
||||
Checks to see whether it is time to end the game.
|
||||
"""
|
||||
if state.isWin(): self.win(state, game)
|
||||
if state.isLose(): self.lose(state, game)
|
||||
|
||||
def win( self, state, game ):
|
||||
if not self.quiet: print("Pacman emerges victorious! Score: %d" % state.data.score)
|
||||
game.gameOver = True
|
||||
|
||||
def lose( self, state, game ):
|
||||
if not self.quiet: print("Pacman died! Score: %d" % state.data.score)
|
||||
game.gameOver = True
|
||||
|
||||
def getProgress(self, game):
|
||||
return float(game.state.getNumFood()) / self.initialState.getNumFood()
|
||||
|
||||
def agentCrash(self, game, agentIndex):
|
||||
if agentIndex == 0:
|
||||
print("Pacman crashed")
|
||||
else:
|
||||
print("A ghost crashed")
|
||||
|
||||
def getMaxTotalTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMaxStartupTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMoveWarningTime(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMoveTimeout(self, agentIndex):
|
||||
return self.timeout
|
||||
|
||||
def getMaxTimeWarnings(self, agentIndex):
|
||||
return 0
|
||||
|
||||
class PacmanRules:
|
||||
"""
|
||||
These functions govern how pacman interacts with his environment under
|
||||
the classic game rules.
|
||||
"""
|
||||
PACMAN_SPEED=1
|
||||
|
||||
def getLegalActions( state ):
|
||||
"""
|
||||
Returns a list of possible actions.
|
||||
"""
|
||||
return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls )
|
||||
getLegalActions = staticmethod( getLegalActions )
|
||||
|
||||
def applyAction( state, action ):
|
||||
"""
|
||||
Edits the state to reflect the results of the action.
|
||||
"""
|
||||
legal = PacmanRules.getLegalActions( state )
|
||||
if action not in legal:
|
||||
raise Exception("Illegal action " + str(action))
|
||||
|
||||
pacmanState = state.data.agentStates[0]
|
||||
|
||||
# Update Configuration
|
||||
vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED )
|
||||
pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector )
|
||||
|
||||
# Eat
|
||||
next = pacmanState.configuration.getPosition()
|
||||
nearest = nearestPoint( next )
|
||||
if manhattanDistance( nearest, next ) <= 0.5 :
|
||||
# Remove food
|
||||
PacmanRules.consume( nearest, state )
|
||||
applyAction = staticmethod( applyAction )
|
||||
|
||||
def consume( position, state ):
|
||||
x,y = position
|
||||
# Eat food
|
||||
if state.data.food[x][y]:
|
||||
state.data.scoreChange += 10
|
||||
state.data.food = state.data.food.copy()
|
||||
state.data.food[x][y] = False
|
||||
state.data._foodEaten = position
|
||||
# TODO: cache numFood?
|
||||
numFood = state.getNumFood()
|
||||
if numFood == 0 and not state.data._lose:
|
||||
state.data.scoreChange += 500
|
||||
state.data._win = True
|
||||
# Eat capsule
|
||||
if( position in state.getCapsules() ):
|
||||
state.data.capsules.remove( position )
|
||||
state.data._capsuleEaten = position
|
||||
# Reset all ghosts' scared timers
|
||||
for index in range( 1, len( state.data.agentStates ) ):
|
||||
state.data.agentStates[index].scaredTimer = SCARED_TIME
|
||||
consume = staticmethod( consume )
|
||||
|
||||
class GhostRules:
|
||||
"""
|
||||
These functions dictate how ghosts interact with their environment.
|
||||
"""
|
||||
GHOST_SPEED=1.0
|
||||
def getLegalActions( state, ghostIndex ):
|
||||
"""
|
||||
Ghosts cannot stop, and cannot turn around unless they
|
||||
reach a dead end, but can turn 90 degrees at intersections.
|
||||
"""
|
||||
conf = state.getGhostState( ghostIndex ).configuration
|
||||
possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls )
|
||||
reverse = Actions.reverseDirection( conf.direction )
|
||||
if Directions.STOP in possibleActions:
|
||||
possibleActions.remove( Directions.STOP )
|
||||
if reverse in possibleActions and len( possibleActions ) > 1:
|
||||
possibleActions.remove( reverse )
|
||||
return possibleActions
|
||||
getLegalActions = staticmethod( getLegalActions )
|
||||
|
||||
def applyAction( state, action, ghostIndex):
|
||||
|
||||
legal = GhostRules.getLegalActions( state, ghostIndex )
|
||||
if action not in legal:
|
||||
raise Exception("Illegal ghost action " + str(action))
|
||||
|
||||
ghostState = state.data.agentStates[ghostIndex]
|
||||
speed = GhostRules.GHOST_SPEED
|
||||
if ghostState.scaredTimer > 0: speed /= 2.0
|
||||
vector = Actions.directionToVector( action, speed )
|
||||
ghostState.configuration = ghostState.configuration.generateSuccessor( vector )
|
||||
applyAction = staticmethod( applyAction )
|
||||
|
||||
def decrementTimer( ghostState):
|
||||
timer = ghostState.scaredTimer
|
||||
if timer == 1:
|
||||
ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos )
|
||||
ghostState.scaredTimer = max( 0, timer - 1 )
|
||||
decrementTimer = staticmethod( decrementTimer )
|
||||
|
||||
def checkDeath( state, agentIndex):
|
||||
pacmanPosition = state.getPacmanPosition()
|
||||
if agentIndex == 0: # Pacman just moved; Anyone can kill him
|
||||
for index in range( 1, len( state.data.agentStates ) ):
|
||||
ghostState = state.data.agentStates[index]
|
||||
ghostPosition = ghostState.configuration.getPosition()
|
||||
if GhostRules.canKill( pacmanPosition, ghostPosition ):
|
||||
GhostRules.collide( state, ghostState, index )
|
||||
else:
|
||||
ghostState = state.data.agentStates[agentIndex]
|
||||
ghostPosition = ghostState.configuration.getPosition()
|
||||
if GhostRules.canKill( pacmanPosition, ghostPosition ):
|
||||
GhostRules.collide( state, ghostState, agentIndex )
|
||||
checkDeath = staticmethod( checkDeath )
|
||||
|
||||
def collide( state, ghostState, agentIndex):
|
||||
if ghostState.scaredTimer > 0:
|
||||
state.data.scoreChange += 200
|
||||
GhostRules.placeGhost(state, ghostState)
|
||||
ghostState.scaredTimer = 0
|
||||
# Added for first-person
|
||||
state.data._eaten[agentIndex] = True
|
||||
else:
|
||||
if not state.data._win:
|
||||
state.data.scoreChange -= 500
|
||||
state.data._lose = True
|
||||
collide = staticmethod( collide )
|
||||
|
||||
def canKill( pacmanPosition, ghostPosition ):
|
||||
return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE
|
||||
canKill = staticmethod( canKill )
|
||||
|
||||
def placeGhost(state, ghostState):
|
||||
ghostState.configuration = ghostState.start
|
||||
placeGhost = staticmethod( placeGhost )
|
||||
|
||||
#############################
|
||||
# FRAMEWORK TO START A GAME #
|
||||
#############################
|
||||
|
||||
def default(str):
|
||||
return str + ' [Default: %default]'
|
||||
|
||||
def parseAgentArgs(str):
|
||||
if str == None: return {}
|
||||
pieces = str.split(',')
|
||||
opts = {}
|
||||
for p in pieces:
|
||||
if '=' in p:
|
||||
key, val = p.split('=')
|
||||
else:
|
||||
key,val = p, 1
|
||||
opts[key] = val
|
||||
return opts
|
||||
|
||||
def readCommand( argv ):
|
||||
"""
|
||||
Processes the command used to run pacman from the command line.
|
||||
"""
|
||||
from optparse import OptionParser
|
||||
usageStr = """
|
||||
USAGE: python pacman.py <options>
|
||||
EXAMPLES: (1) python pacman.py
|
||||
- starts an interactive game
|
||||
(2) python pacman.py --layout smallClassic --zoom 2
|
||||
OR python pacman.py -l smallClassic -z 2
|
||||
- starts an interactive game on a smaller board, zoomed in
|
||||
"""
|
||||
parser = OptionParser(usageStr)
|
||||
|
||||
parser.add_option('-n', '--numGames', dest='numGames', type='int',
|
||||
help=default('the number of GAMES to play'), metavar='GAMES', default=1)
|
||||
parser.add_option('-l', '--layout', dest='layout',
|
||||
help=default('the LAYOUT_FILE from which to load the map layout'),
|
||||
metavar='LAYOUT_FILE', default='mediumClassic')
|
||||
parser.add_option('-p', '--pacman', dest='pacman',
|
||||
help=default('the agent TYPE in the pacmanAgents module to use'),
|
||||
metavar='TYPE', default='KeyboardAgent')
|
||||
parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics',
|
||||
help='Display output as text only', default=False)
|
||||
parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics',
|
||||
help='Generate minimal output and no graphics', default=False)
|
||||
parser.add_option('-g', '--ghosts', dest='ghost',
|
||||
help=default('the ghost agent TYPE in the ghostAgents module to use'),
|
||||
metavar = 'TYPE', default='RandomGhost')
|
||||
parser.add_option('-k', '--numghosts', type='int', dest='numGhosts',
|
||||
help=default('The maximum number of ghosts to use'), default=4)
|
||||
parser.add_option('-z', '--zoom', type='float', dest='zoom',
|
||||
help=default('Zoom the size of the graphics window'), default=1.0)
|
||||
parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed',
|
||||
help='Fixes the random seed to always play the same game', default=False)
|
||||
parser.add_option('-r', '--recordActions', action='store_true', dest='record',
|
||||
help='Writes game histories to a file (named by the time they were played)', default=False)
|
||||
parser.add_option('--replay', dest='gameToReplay',
|
||||
help='A recorded game file (pickle) to replay', default=None)
|
||||
parser.add_option('-a','--agentArgs',dest='agentArgs',
|
||||
help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"')
|
||||
parser.add_option('-x', '--numTraining', dest='numTraining', type='int',
|
||||
help=default('How many episodes are training (suppresses output)'), default=0)
|
||||
parser.add_option('--frameTime', dest='frameTime', type='float',
|
||||
help=default('Time to delay between frames; <0 means keyboard'), default=0.1)
|
||||
parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions',
|
||||
help='Turns on exception handling and timeouts during games', default=False)
|
||||
parser.add_option('--timeout', dest='timeout', type='int',
|
||||
help=default('Maximum length of time an agent can spend computing in a single game'), default=30)
|
||||
|
||||
options, otherjunk = parser.parse_args(argv)
|
||||
if len(otherjunk) != 0:
|
||||
raise Exception('Command line input not understood: ' + str(otherjunk))
|
||||
args = dict()
|
||||
|
||||
# Fix the random seed
|
||||
if options.fixRandomSeed: random.seed('cs188')
|
||||
|
||||
# Choose a layout
|
||||
args['layout'] = layout.getLayout( options.layout )
|
||||
if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found")
|
||||
|
||||
# Choose a Pacman agent
|
||||
noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics)
|
||||
pacmanType = loadAgent(options.pacman, noKeyboard)
|
||||
agentOpts = parseAgentArgs(options.agentArgs)
|
||||
if options.numTraining > 0:
|
||||
args['numTraining'] = options.numTraining
|
||||
if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining
|
||||
pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs
|
||||
args['pacman'] = pacman
|
||||
|
||||
# Don't display training games
|
||||
if 'numTrain' in agentOpts:
|
||||
options.numQuiet = int(agentOpts['numTrain'])
|
||||
options.numIgnore = int(agentOpts['numTrain'])
|
||||
|
||||
# Choose a ghost agent
|
||||
ghostType = loadAgent(options.ghost, noKeyboard)
|
||||
args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )]
|
||||
|
||||
# Choose a display format
|
||||
if options.quietGraphics:
|
||||
import textDisplay
|
||||
args['display'] = textDisplay.NullGraphics()
|
||||
elif options.textGraphics:
|
||||
import textDisplay
|
||||
textDisplay.SLEEP_TIME = options.frameTime
|
||||
args['display'] = textDisplay.PacmanGraphics()
|
||||
else:
|
||||
import graphicsDisplay
|
||||
args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime)
|
||||
args['numGames'] = options.numGames
|
||||
args['record'] = options.record
|
||||
args['catchExceptions'] = options.catchExceptions
|
||||
args['timeout'] = options.timeout
|
||||
|
||||
# Special case: recorded games don't use the runGames method or args structure
|
||||
if options.gameToReplay != None:
|
||||
print('Replaying recorded game %s.' % options.gameToReplay)
|
||||
import pickle
|
||||
f = open(options.gameToReplay, 'rb')
|
||||
try: recorded = pickle.load(f)
|
||||
finally: f.close()
|
||||
recorded['display'] = args['display']
|
||||
replayGame(**recorded)
|
||||
sys.exit(0)
|
||||
|
||||
return args
|
||||
|
||||
def loadAgent(pacman, nographics):
|
||||
# Looks through all pythonPath Directories for the right module,
|
||||
pythonPathStr = os.path.expandvars("$PYTHONPATH")
|
||||
if pythonPathStr.find(';') == -1:
|
||||
pythonPathDirs = pythonPathStr.split(':')
|
||||
else:
|
||||
pythonPathDirs = pythonPathStr.split(';')
|
||||
pythonPathDirs.append('.')
|
||||
|
||||
for moduleDir in pythonPathDirs:
|
||||
if not os.path.isdir(moduleDir): continue
|
||||
moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')]
|
||||
for modulename in moduleNames:
|
||||
try:
|
||||
module = __import__(modulename[:-3])
|
||||
except ImportError:
|
||||
continue
|
||||
if pacman in dir(module):
|
||||
if nographics and modulename == 'keyboardAgents.py':
|
||||
raise Exception('Using the keyboard requires graphics (not text display)')
|
||||
return getattr(module, pacman)
|
||||
raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.')
|
||||
|
||||
def replayGame( layout, actions, display ):
|
||||
import pacmanAgents, ghostAgents
|
||||
rules = ClassicGameRules()
|
||||
agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())]
|
||||
game = rules.newGame( layout, agents[0], agents[1:], display )
|
||||
state = game.state
|
||||
display.initialize(state.data)
|
||||
|
||||
for action in actions:
|
||||
# Execute the action
|
||||
state = state.generateSuccessor( *action )
|
||||
# Change the display
|
||||
display.update( state.data )
|
||||
# Allow for game specific conditions (winning, losing, etc.)
|
||||
rules.process(state, game)
|
||||
|
||||
display.finish()
|
||||
|
||||
def runGames( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30 ):
|
||||
import __main__
|
||||
__main__.__dict__['_display'] = display
|
||||
|
||||
rules = ClassicGameRules(timeout)
|
||||
games = []
|
||||
|
||||
for i in range( numGames ):
|
||||
beQuiet = i < numTraining
|
||||
if beQuiet:
|
||||
# Suppress output and graphics
|
||||
import textDisplay
|
||||
gameDisplay = textDisplay.NullGraphics()
|
||||
rules.quiet = True
|
||||
else:
|
||||
gameDisplay = display
|
||||
rules.quiet = False
|
||||
game = rules.newGame( layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions)
|
||||
game.run()
|
||||
if not beQuiet: games.append(game)
|
||||
|
||||
if record:
|
||||
import time, pickle
|
||||
fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]])
|
||||
f = open(fname, 'wb')
|
||||
components = {'layout': layout, 'actions': game.moveHistory}
|
||||
pickle.dump(components, f)
|
||||
f.close()
|
||||
|
||||
if (numGames-numTraining) > 0:
|
||||
scores = [game.state.getScore() for game in games]
|
||||
wins = [game.state.isWin() for game in games]
|
||||
winRate = wins.count(True)/ float(len(wins))
|
||||
print('Average Score:', sum(scores) / float(len(scores)))
|
||||
print('Scores: ', ', '.join([str(score) for score in scores]))
|
||||
print('Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate))
|
||||
print('Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins]))
|
||||
|
||||
return games
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
The main function called when pacman.py is run
|
||||
from the command line:
|
||||
|
||||
> python pacman.py
|
||||
|
||||
See the usage string for more details.
|
||||
|
||||
> python pacman.py --help
|
||||
"""
|
||||
args = readCommand( sys.argv[1:] ) # Get game components based on input
|
||||
runGames( **args )
|
||||
|
||||
# import cProfile
|
||||
# cProfile.run("runGames( **args )")
|
||||
pass
|
@ -0,0 +1,52 @@
|
||||
# pacmanAgents.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
from pacman import Directions
|
||||
from game import Agent
|
||||
import random
|
||||
import game
|
||||
import util
|
||||
|
||||
class LeftTurnAgent(game.Agent):
|
||||
"An agent that turns left at every opportunity"
|
||||
|
||||
def getAction(self, state):
|
||||
legal = state.getLegalPacmanActions()
|
||||
current = state.getPacmanState().configuration.direction
|
||||
if current == Directions.STOP: current = Directions.NORTH
|
||||
left = Directions.LEFT[current]
|
||||
if left in legal: return left
|
||||
if current in legal: return current
|
||||
if Directions.RIGHT[current] in legal: return Directions.RIGHT[current]
|
||||
if Directions.LEFT[left] in legal: return Directions.LEFT[left]
|
||||
return Directions.STOP
|
||||
|
||||
class GreedyAgent(Agent):
|
||||
def __init__(self, evalFn="scoreEvaluation"):
|
||||
self.evaluationFunction = util.lookup(evalFn, globals())
|
||||
assert self.evaluationFunction != None
|
||||
|
||||
def getAction(self, state):
|
||||
# Generate candidate actions
|
||||
legal = state.getLegalPacmanActions()
|
||||
if Directions.STOP in legal: legal.remove(Directions.STOP)
|
||||
|
||||
successors = [(state.generateSuccessor(0, action), action) for action in legal]
|
||||
scored = [(self.evaluationFunction(state), action) for state, action in successors]
|
||||
bestScore = max(scored)[0]
|
||||
bestActions = [pair[1] for pair in scored if pair[0] == bestScore]
|
||||
return random.choice(bestActions)
|
||||
|
||||
def scoreEvaluation(state):
|
||||
return state.getScore()
|
@ -0,0 +1,18 @@
|
||||
# projectParams.py
|
||||
# ----------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
STUDENT_CODE_DEFAULT = 'searchAgents.py,search.py'
|
||||
PROJECT_TEST_CLASSES = 'searchTestClasses.py'
|
||||
PROJECT_NAME = 'Project 1: Search'
|
||||
BONUS_PIC = False
|
@ -0,0 +1,205 @@
|
||||
# search.py
|
||||
# ---------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
In search.py, you will implement generic search algorithms which are called by
|
||||
Pacman agents (in searchAgents.py).
|
||||
"""
|
||||
|
||||
import util
|
||||
|
||||
class SearchProblem:
|
||||
"""
|
||||
This class outlines the structure of a search problem, but doesn't implement
|
||||
any of the methods (in object-oriented terminology: an abstract class).
|
||||
|
||||
You do not need to change anything in this class, ever.
|
||||
"""
|
||||
|
||||
def getStartState(self):
|
||||
"""
|
||||
Returns the start state for the search problem.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
state: Search state
|
||||
|
||||
Returns True if and only if the state is a valid goal state.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
state: Search state
|
||||
|
||||
For a given state, this should return a list of triples, (successor,
|
||||
action, stepCost), where 'successor' is a successor to the current
|
||||
state, 'action' is the action required to get there, and 'stepCost' is
|
||||
the incremental cost of expanding to that successor.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
actions: A list of actions to take
|
||||
|
||||
This method returns the total cost of a particular sequence of actions.
|
||||
The sequence must be composed of legal moves.
|
||||
"""
|
||||
util.raiseNotDefined()
|
||||
|
||||
|
||||
def tinyMazeSearch(problem):
|
||||
"""
|
||||
Returns a sequence of moves that solves tinyMaze. For any other maze, the
|
||||
sequence of moves will be incorrect, so only use this for tinyMaze.
|
||||
"""
|
||||
from game import Directions
|
||||
s = Directions.SOUTH
|
||||
w = Directions.WEST
|
||||
return [s, s, w, s, w, w, s, w]
|
||||
|
||||
def depthFirstSearch(problem):
|
||||
"""
|
||||
Search the deepest nodes in the search tree first.
|
||||
|
||||
Your search algorithm needs to return a list of actions that reaches the
|
||||
goal. Make sure to implement a graph search algorithm.
|
||||
|
||||
To get started, you might want to try some of these simple commands to
|
||||
understand the search problem that is being passed in:
|
||||
|
||||
print("Start:", problem.getStartState())
|
||||
print("Is the start a goal?", problem.isGoalState(problem.getStartState()))
|
||||
print("Start's successors:", problem.getSuccessors(problem.getStartState()))
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
from util import Stack
|
||||
|
||||
frontier=util.Stack()
|
||||
visited=[]
|
||||
frontier.push((problem.getStartState(),[]))
|
||||
|
||||
while not frontier.isEmpty():
|
||||
cur_node,actions=frontier.pop()
|
||||
if problem.isGoalState(cur_node):
|
||||
return actions
|
||||
|
||||
if cur_node not in visited:
|
||||
expand=problem.getSuccessors(cur_node)
|
||||
visited.append(cur_node)
|
||||
for location,direction,cost in expand:
|
||||
if location not in visited:
|
||||
frontier.push((location,actions+[direction]))
|
||||
util.raiseNotDefined()
|
||||
|
||||
def breadthFirstSearch(problem):
|
||||
"""Search the shallowest nodes in the search tree first."""
|
||||
"*** YOUR CODE HERE ***"
|
||||
frontier=util.Queue()
|
||||
visited=[]
|
||||
frontier.push((problem.getStartState(),[]))
|
||||
|
||||
while not frontier.isEmpty():
|
||||
cur_node,actions=frontier.pop()
|
||||
if problem.isGoalState(cur_node):
|
||||
return actions
|
||||
|
||||
if cur_node not in visited:
|
||||
expand=problem.getSuccessors(cur_node)
|
||||
visited.append(cur_node)
|
||||
for location,direction,cost in expand:
|
||||
if location not in visited:
|
||||
frontier.push((location,actions+[direction]))
|
||||
util.raiseNotDefined()
|
||||
|
||||
def uniformCostSearch(problem):
|
||||
"""Search the node of least total cost first."""
|
||||
"*** YOUR CODE HERE ***"
|
||||
frontier = util.PriorityQueueWithFunction(lambda x: x[2])
|
||||
visited=[]
|
||||
frontier.push((problem.getStartState(),None,0))
|
||||
|
||||
path = []
|
||||
parentSeq = {}
|
||||
parentSeq[(problem.getStartState(),None,0)]=None
|
||||
while not frontier.isEmpty():
|
||||
current_fullstate=frontier.pop()
|
||||
# print(current_fullstate)
|
||||
cur_node=current_fullstate[0]
|
||||
actions=current_fullstate[1]
|
||||
if problem.isGoalState(cur_node):
|
||||
break
|
||||
|
||||
if cur_node not in visited:
|
||||
expand=problem.getSuccessors(cur_node)
|
||||
visited.append(cur_node)
|
||||
for state in expand:
|
||||
location = state[0]
|
||||
direction = state[1]
|
||||
cost=current_fullstate[2]+state[2]
|
||||
if location not in visited:
|
||||
frontier.push((location,direction,cost))
|
||||
parentSeq[(location,direction)] = current_fullstate
|
||||
# elif location in visited:
|
||||
# frontier.update((location,direction,cost))
|
||||
child = current_fullstate
|
||||
|
||||
while (child != None):
|
||||
path.append(child[1])
|
||||
if child[0] != problem.getStartState():
|
||||
child = parentSeq[(child[0],child[1])]
|
||||
else:
|
||||
child = None
|
||||
path.reverse()
|
||||
return path[1:]
|
||||
util.raiseNotDefined()
|
||||
|
||||
def nullHeuristic(state, problem=None):
|
||||
"""
|
||||
A heuristic function estimates the cost from the current state to the nearest
|
||||
goal in the provided SearchProblem. This heuristic is trivial.
|
||||
"""
|
||||
return 0
|
||||
|
||||
def aStarSearch(problem, heuristic=nullHeuristic):
|
||||
"""Search the node that has the lowest combined cost and heuristic first."""
|
||||
"*** YOUR CODE HERE ***"
|
||||
frontier = util.PriorityQueue()
|
||||
actions = []
|
||||
frontier.push((problem.getStartState(),actions),0)
|
||||
visited = []
|
||||
|
||||
while frontier:
|
||||
cur_node,actions = frontier.pop()
|
||||
if problem.isGoalState(cur_node):
|
||||
return actions
|
||||
if cur_node not in visited:
|
||||
visited.append(cur_node)
|
||||
expand = problem.getSuccessors(cur_node)
|
||||
for successor, action, cost in expand:
|
||||
tempActions = actions + [action]
|
||||
nextCost = problem.getCostOfActions(tempActions) + heuristic(successor,problem)
|
||||
if successor not in visited:
|
||||
frontier.push((successor,tempActions),nextCost)
|
||||
util.raiseNotDefined()
|
||||
|
||||
|
||||
# Abbreviations
|
||||
bfs = breadthFirstSearch
|
||||
dfs = depthFirstSearch
|
||||
astar = aStarSearch
|
||||
ucs = uniformCostSearch
|
@ -0,0 +1,575 @@
|
||||
# searchAgents.py
|
||||
# ---------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
"""
|
||||
This file contains all of the agents that can be selected to control Pacman. To
|
||||
select an agent, use the '-p' option when running pacman.py. Arguments can be
|
||||
passed to your agent using '-a'. For example, to load a SearchAgent that uses
|
||||
depth first search (dfs), run the following command:
|
||||
|
||||
> python pacman.py -p SearchAgent -a fn=depthFirstSearch
|
||||
|
||||
Commands to invoke other search strategies can be found in the project
|
||||
description.
|
||||
|
||||
Please only change the parts of the file you are asked to. Look for the lines
|
||||
that say
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
|
||||
The parts you fill in start about 3/4 of the way down. Follow the project
|
||||
description for details.
|
||||
|
||||
Good luck and happy searching!
|
||||
"""
|
||||
|
||||
from game import Directions
|
||||
from game import Agent
|
||||
from game import Actions
|
||||
import util
|
||||
import time
|
||||
import search
|
||||
|
||||
class GoWestAgent(Agent):
|
||||
"An agent that goes West until it can't."
|
||||
|
||||
def getAction(self, state):
|
||||
"The agent receives a GameState (defined in pacman.py)."
|
||||
if Directions.WEST in state.getLegalPacmanActions():
|
||||
return Directions.WEST
|
||||
else:
|
||||
return Directions.STOP
|
||||
|
||||
#######################################################
|
||||
# This portion is written for you, but will only work #
|
||||
# after you fill in parts of search.py #
|
||||
#######################################################
|
||||
|
||||
class SearchAgent(Agent):
|
||||
"""
|
||||
This very general search agent finds a path using a supplied search
|
||||
algorithm for a supplied search problem, then returns actions to follow that
|
||||
path.
|
||||
|
||||
As a default, this agent runs DFS on a PositionSearchProblem to find
|
||||
location (1,1)
|
||||
|
||||
Options for fn include:
|
||||
depthFirstSearch or dfs
|
||||
breadthFirstSearch or bfs
|
||||
|
||||
|
||||
Note: You should NOT change any code in SearchAgent
|
||||
"""
|
||||
|
||||
def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'):
|
||||
# Warning: some advanced Python magic is employed below to find the right functions and problems
|
||||
|
||||
# Get the search function from the name and heuristic
|
||||
if fn not in dir(search):
|
||||
raise AttributeError(fn + ' is not a search function in search.py.')
|
||||
func = getattr(search, fn)
|
||||
if 'heuristic' not in func.__code__.co_varnames:
|
||||
print('[SearchAgent] using function ' + fn)
|
||||
self.searchFunction = func
|
||||
else:
|
||||
if heuristic in globals().keys():
|
||||
heur = globals()[heuristic]
|
||||
elif heuristic in dir(search):
|
||||
heur = getattr(search, heuristic)
|
||||
else:
|
||||
raise AttributeError(heuristic + ' is not a function in searchAgents.py or search.py.')
|
||||
print('[SearchAgent] using function %s and heuristic %s' % (fn, heuristic))
|
||||
# Note: this bit of Python trickery combines the search algorithm and the heuristic
|
||||
self.searchFunction = lambda x: func(x, heuristic=heur)
|
||||
|
||||
# Get the search problem type from the name
|
||||
if prob not in globals().keys() or not prob.endswith('Problem'):
|
||||
raise AttributeError(prob + ' is not a search problem type in SearchAgents.py.')
|
||||
self.searchType = globals()[prob]
|
||||
print('[SearchAgent] using problem type ' + prob)
|
||||
|
||||
def registerInitialState(self, state):
|
||||
"""
|
||||
This is the first time that the agent sees the layout of the game
|
||||
board. Here, we choose a path to the goal. In this phase, the agent
|
||||
should compute the path to the goal and store it in a local variable.
|
||||
All of the work is done in this method!
|
||||
|
||||
state: a GameState object (pacman.py)
|
||||
"""
|
||||
if self.searchFunction == None: raise Exception("No search function provided for SearchAgent")
|
||||
starttime = time.time()
|
||||
problem = self.searchType(state) # Makes a new search problem
|
||||
self.actions = self.searchFunction(problem) # Find a path
|
||||
totalCost = problem.getCostOfActions(self.actions)
|
||||
print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime))
|
||||
if '_expanded' in dir(problem): print('Search nodes expanded: %d' % problem._expanded)
|
||||
|
||||
def getAction(self, state):
|
||||
"""
|
||||
Returns the next action in the path chosen earlier (in
|
||||
registerInitialState). Return Directions.STOP if there is no further
|
||||
action to take.
|
||||
|
||||
state: a GameState object (pacman.py)
|
||||
"""
|
||||
if 'actionIndex' not in dir(self): self.actionIndex = 0
|
||||
i = self.actionIndex
|
||||
self.actionIndex += 1
|
||||
if i < len(self.actions):
|
||||
return self.actions[i]
|
||||
else:
|
||||
return Directions.STOP
|
||||
|
||||
class PositionSearchProblem(search.SearchProblem):
|
||||
"""
|
||||
A search problem defines the state space, start state, goal test, successor
|
||||
function and cost function. This search problem can be used to find paths
|
||||
to a particular point on the pacman board.
|
||||
|
||||
The state space consists of (x,y) positions in a pacman game.
|
||||
|
||||
Note: this search problem is fully specified; you should NOT change it.
|
||||
"""
|
||||
|
||||
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True):
|
||||
"""
|
||||
Stores the start and goal.
|
||||
|
||||
gameState: A GameState object (pacman.py)
|
||||
costFn: A function from a search state (tuple) to a non-negative number
|
||||
goal: A position in the gameState
|
||||
"""
|
||||
self.walls = gameState.getWalls()
|
||||
self.startState = gameState.getPacmanPosition()
|
||||
if start != None: self.startState = start
|
||||
self.goal = goal
|
||||
self.costFn = costFn
|
||||
self.visualize = visualize
|
||||
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
|
||||
print('Warning: this does not look like a regular search maze')
|
||||
|
||||
# For display purposes
|
||||
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
|
||||
|
||||
def getStartState(self):
|
||||
return self.startState
|
||||
|
||||
def isGoalState(self, state):
|
||||
isGoal = state == self.goal
|
||||
|
||||
# For display purposes only
|
||||
if isGoal and self.visualize:
|
||||
self._visitedlist.append(state)
|
||||
import __main__
|
||||
if '_display' in dir(__main__):
|
||||
if 'drawExpandedCells' in dir(__main__._display): #@UndefinedVariable
|
||||
__main__._display.drawExpandedCells(self._visitedlist) #@UndefinedVariable
|
||||
|
||||
return isGoal
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
Returns successor states, the actions they require, and a cost of 1.
|
||||
|
||||
As noted in search.py:
|
||||
For a given state, this should return a list of triples,
|
||||
(successor, action, stepCost), where 'successor' is a
|
||||
successor to the current state, 'action' is the action
|
||||
required to get there, and 'stepCost' is the incremental
|
||||
cost of expanding to that successor
|
||||
"""
|
||||
|
||||
successors = []
|
||||
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
x,y = state
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
if not self.walls[nextx][nexty]:
|
||||
nextState = (nextx, nexty)
|
||||
cost = self.costFn(nextState)
|
||||
successors.append( ( nextState, action, cost) )
|
||||
|
||||
# Bookkeeping for display purposes
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
if state not in self._visited:
|
||||
self._visited[state] = True
|
||||
self._visitedlist.append(state)
|
||||
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999.
|
||||
"""
|
||||
if actions == None: return 999999
|
||||
x,y= self.getStartState()
|
||||
cost = 0
|
||||
for action in actions:
|
||||
# Check figure out the next state and see whether its' legal
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]: return 999999
|
||||
cost += self.costFn((x,y))
|
||||
return cost
|
||||
|
||||
class StayEastSearchAgent(SearchAgent):
|
||||
"""
|
||||
An agent for position search with a cost function that penalizes being in
|
||||
positions on the West side of the board.
|
||||
|
||||
The cost function for stepping into a position (x,y) is 1/2^x.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.searchFunction = search.uniformCostSearch
|
||||
costFn = lambda pos: .5 ** pos[0]
|
||||
self.searchType = lambda state: PositionSearchProblem(state, costFn, (1, 1), None, False)
|
||||
|
||||
class StayWestSearchAgent(SearchAgent):
|
||||
"""
|
||||
An agent for position search with a cost function that penalizes being in
|
||||
positions on the East side of the board.
|
||||
|
||||
The cost function for stepping into a position (x,y) is 2^x.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.searchFunction = search.uniformCostSearch
|
||||
costFn = lambda pos: 2 ** pos[0]
|
||||
self.searchType = lambda state: PositionSearchProblem(state, costFn)
|
||||
|
||||
def manhattanHeuristic(position, problem, info={}):
|
||||
"The Manhattan distance heuristic for a PositionSearchProblem"
|
||||
xy1 = position
|
||||
xy2 = problem.goal
|
||||
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
|
||||
|
||||
def euclideanHeuristic(position, problem, info={}):
|
||||
"The Euclidean distance heuristic for a PositionSearchProblem"
|
||||
xy1 = position
|
||||
xy2 = problem.goal
|
||||
return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5
|
||||
|
||||
#####################################################
|
||||
# This portion is incomplete. Time to write code! #
|
||||
#####################################################
|
||||
|
||||
class CornersProblem(search.SearchProblem):
|
||||
"""
|
||||
This search problem finds paths through all four corners of a layout.
|
||||
|
||||
You must select a suitable state space and successor function
|
||||
"""
|
||||
|
||||
def __init__(self, startingGameState):
|
||||
"""
|
||||
Stores the walls, pacman's starting position and corners.
|
||||
"""
|
||||
self.walls = startingGameState.getWalls()
|
||||
self.startingPosition = startingGameState.getPacmanPosition()
|
||||
top, right = self.walls.height-2, self.walls.width-2
|
||||
self.corners = ((1,1), (1,top), (right, 1), (right, top))
|
||||
for corner in self.corners:
|
||||
if not startingGameState.hasFood(*corner):
|
||||
print('Warning: no food in corner ' + str(corner))
|
||||
self._expanded = 0 # DO NOT CHANGE; Number of search nodes expanded
|
||||
# Please add any code here which you would like to use
|
||||
# in initializing the problem
|
||||
"*** YOUR CODE HERE ***"
|
||||
|
||||
def getStartState(self):
|
||||
"""
|
||||
Returns the start state (in your state space, not the full Pacman state
|
||||
space)
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
return (self.startingPosition,[])
|
||||
util.raiseNotDefined()
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
Returns whether this search state is a goal state of the problem.
|
||||
"""
|
||||
"*** YOUR CODE HERE ***"
|
||||
pos = state[0]
|
||||
Visited_Corners = state[1]
|
||||
|
||||
return len(Visited_Corners)==4
|
||||
util.raiseNotDefined()
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"""
|
||||
Returns successor states, the actions they require, and a cost of 1.
|
||||
|
||||
As noted in search.py:
|
||||
For a given state, this should return a list of triples, (successor,
|
||||
action, stepCost), where 'successor' is a successor to the current
|
||||
state, 'action' is the action required to get there, and 'stepCost'
|
||||
is the incremental cost of expanding to that successor
|
||||
"""
|
||||
x,y = state[0]
|
||||
successors = []
|
||||
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
# Add a successor state to the successor list if the action is legal
|
||||
# Here's a code snippet for figuring out whether a new position hits a wall:
|
||||
# x,y = currentPosition
|
||||
# dx, dy = Actions.directionToVector(action)
|
||||
# nextx, nexty = int(x + dx), int(y + dy)
|
||||
# hitsWall = self.walls[nextx][nexty]
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
next_node = (nextx, nexty)
|
||||
hitsWall = self.walls[nextx][nexty]
|
||||
if not hitsWall:
|
||||
list_vis_corner = list(state[1])
|
||||
if next_node in self.corners:
|
||||
if next_node not in list_vis_corner:
|
||||
list_vis_corner.append( next_node )
|
||||
successor = ((next_node, list_vis_corner), action, 1)
|
||||
successors.append(successor)
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""
|
||||
Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999. This is implemented for you.
|
||||
"""
|
||||
if actions == None: return 999999
|
||||
x,y= self.startingPosition
|
||||
for action in actions:
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]: return 999999
|
||||
return len(actions)
|
||||
|
||||
def minmanhattan(corners, pos):
|
||||
if len(corners) == 0:
|
||||
return 0
|
||||
|
||||
hn = []
|
||||
for loc in corners:
|
||||
dis = abs(loc[0] - pos[0]) + abs(loc[1] - pos[1])+ minmanhattan([c for c in corners if c != loc], loc)
|
||||
hn.append(dis)
|
||||
|
||||
return min(hn)
|
||||
def cornersHeuristic(state, problem):
|
||||
"""
|
||||
A heuristic for the CornersProblem that you defined.
|
||||
|
||||
state: The current search state
|
||||
(a data structure you chose in your search problem)
|
||||
|
||||
problem: The CornersProblem instance for this layout.
|
||||
|
||||
This function should always return a number that is a lower bound on the
|
||||
shortest path from the state to a goal of the problem; i.e. it should be
|
||||
admissible (as well as consistent).
|
||||
"""
|
||||
corners = problem.corners # These are the corner coordinates
|
||||
walls = problem.walls # These are the walls of the maze, as a Grid (game.py)
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
return minmanhattan([item for item in corners if item not in state[1]],state[0])
|
||||
return 0 # Default to trivial solution
|
||||
|
||||
class AStarCornersAgent(SearchAgent):
|
||||
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
|
||||
def __init__(self):
|
||||
self.searchFunction = lambda prob: search.aStarSearch(prob, cornersHeuristic)
|
||||
self.searchType = CornersProblem
|
||||
|
||||
class FoodSearchProblem:
|
||||
"""
|
||||
A search problem associated with finding the a path that collects all of the
|
||||
food (dots) in a Pacman game.
|
||||
|
||||
A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where
|
||||
pacmanPosition: a tuple (x,y) of integers specifying Pacman's position
|
||||
foodGrid: a Grid (see game.py) of either True or False, specifying remaining food
|
||||
"""
|
||||
def __init__(self, startingGameState):
|
||||
self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood())
|
||||
self.walls = startingGameState.getWalls()
|
||||
self.startingGameState = startingGameState
|
||||
self._expanded = 0 # DO NOT CHANGE
|
||||
self.heuristicInfo = {} # A dictionary for the heuristic to store information
|
||||
|
||||
def getStartState(self):
|
||||
return self.start
|
||||
|
||||
def isGoalState(self, state):
|
||||
return state[1].count() == 0
|
||||
|
||||
def getSuccessors(self, state):
|
||||
"Returns successor states, the actions they require, and a cost of 1."
|
||||
successors = []
|
||||
self._expanded += 1 # DO NOT CHANGE
|
||||
for direction in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
|
||||
x,y = state[0]
|
||||
dx, dy = Actions.directionToVector(direction)
|
||||
nextx, nexty = int(x + dx), int(y + dy)
|
||||
if not self.walls[nextx][nexty]:
|
||||
nextFood = state[1].copy()
|
||||
nextFood[nextx][nexty] = False
|
||||
successors.append( ( ((nextx, nexty), nextFood), direction, 1) )
|
||||
return successors
|
||||
|
||||
def getCostOfActions(self, actions):
|
||||
"""Returns the cost of a particular sequence of actions. If those actions
|
||||
include an illegal move, return 999999"""
|
||||
x,y= self.getStartState()[0]
|
||||
cost = 0
|
||||
for action in actions:
|
||||
# figure out the next state and see whether it's legal
|
||||
dx, dy = Actions.directionToVector(action)
|
||||
x, y = int(x + dx), int(y + dy)
|
||||
if self.walls[x][y]:
|
||||
return 999999
|
||||
cost += 1
|
||||
return cost
|
||||
|
||||
class AStarFoodSearchAgent(SearchAgent):
|
||||
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
|
||||
def __init__(self):
|
||||
self.searchFunction = lambda prob: search.aStarSearch(prob, foodHeuristic)
|
||||
self.searchType = FoodSearchProblem
|
||||
|
||||
def foodHeuristic(state, problem):
|
||||
"""
|
||||
Your heuristic for the FoodSearchProblem goes here.
|
||||
|
||||
This heuristic must be consistent to ensure correctness. First, try to come
|
||||
up with an admissible heuristic; almost all admissible heuristics will be
|
||||
consistent as well.
|
||||
|
||||
If using A* ever finds a solution that is worse uniform cost search finds,
|
||||
your heuristic is *not* consistent, and probably not admissible! On the
|
||||
other hand, inadmissible or inconsistent heuristics may find optimal
|
||||
solutions, so be careful.
|
||||
|
||||
The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid
|
||||
(see game.py) of either True or False. You can call foodGrid.asList() to get
|
||||
a list of food coordinates instead.
|
||||
|
||||
If you want access to info like walls, capsules, etc., you can query the
|
||||
problem. For example, problem.walls gives you a Grid of where the walls
|
||||
are.
|
||||
|
||||
If you want to *store* information to be reused in other calls to the
|
||||
heuristic, there is a dictionary called problem.heuristicInfo that you can
|
||||
use. For example, if you only want to count the walls once and store that
|
||||
value, try: problem.heuristicInfo['wallCount'] = problem.walls.count()
|
||||
Subsequent calls to this heuristic can access
|
||||
problem.heuristicInfo['wallCount']
|
||||
"""
|
||||
position, foodGrid = state
|
||||
"*** YOUR CODE HERE ***"
|
||||
food_coordinates = foodGrid.asList()
|
||||
if not food_coordinates:
|
||||
return 0
|
||||
res = -1
|
||||
for tmp in food_coordinates:
|
||||
dist = mazeDistance(tmp, position, problem.startingGameState)
|
||||
res = max(res,dist)
|
||||
return res
|
||||
return 0
|
||||
|
||||
class ClosestDotSearchAgent(SearchAgent):
|
||||
"Search for all food using a sequence of searches"
|
||||
def registerInitialState(self, state):
|
||||
self.actions = []
|
||||
currentState = state
|
||||
while(currentState.getFood().count() > 0):
|
||||
nextPathSegment = self.findPathToClosestDot(currentState) # The missing piece
|
||||
self.actions += nextPathSegment
|
||||
for action in nextPathSegment:
|
||||
legal = currentState.getLegalActions()
|
||||
if action not in legal:
|
||||
t = (str(action), str(currentState))
|
||||
raise Exception('findPathToClosestDot returned an illegal move: %s!\n%s' % t)
|
||||
currentState = currentState.generateSuccessor(0, action)
|
||||
self.actionIndex = 0
|
||||
print('Path found with cost %d.' % len(self.actions))
|
||||
|
||||
def findPathToClosestDot(self, gameState):
|
||||
"""
|
||||
Returns a path (a list of actions) to the closest dot, starting from
|
||||
gameState.
|
||||
"""
|
||||
# Here are some useful elements of the startState
|
||||
startPosition = gameState.getPacmanPosition()
|
||||
food = gameState.getFood()
|
||||
walls = gameState.getWalls()
|
||||
problem = AnyFoodSearchProblem(gameState)
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
|
||||
class AnyFoodSearchProblem(PositionSearchProblem):
|
||||
"""
|
||||
A search problem for finding a path to any food.
|
||||
|
||||
This search problem is just like the PositionSearchProblem, but has a
|
||||
different goal test, which you need to fill in below. The state space and
|
||||
successor function do not need to be changed.
|
||||
|
||||
The class definition above, AnyFoodSearchProblem(PositionSearchProblem),
|
||||
inherits the methods of the PositionSearchProblem.
|
||||
|
||||
You can use this search problem to help you fill in the findPathToClosestDot
|
||||
method.
|
||||
"""
|
||||
|
||||
def __init__(self, gameState):
|
||||
"Stores information from the gameState. You don't need to change this."
|
||||
# Store the food for later reference
|
||||
self.food = gameState.getFood()
|
||||
|
||||
# Store info for the PositionSearchProblem (no need to change this)
|
||||
self.walls = gameState.getWalls()
|
||||
self.startState = gameState.getPacmanPosition()
|
||||
self.costFn = lambda x: 1
|
||||
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
|
||||
|
||||
def isGoalState(self, state):
|
||||
"""
|
||||
The state is Pacman's position. Fill this in with a goal test that will
|
||||
complete the problem definition.
|
||||
"""
|
||||
x,y = state
|
||||
|
||||
"*** YOUR CODE HERE ***"
|
||||
util.raiseNotDefined()
|
||||
|
||||
def mazeDistance(point1, point2, gameState):
|
||||
"""
|
||||
Returns the maze distance between any two points, using the search functions
|
||||
you have already built. The gameState can be any game state -- Pacman's
|
||||
position in that state is ignored.
|
||||
|
||||
Example usage: mazeDistance( (2,4), (5,6), gameState)
|
||||
|
||||
This might be a useful helper function for your ApproximateSearchAgent.
|
||||
"""
|
||||
x1, y1 = point1
|
||||
x2, y2 = point2
|
||||
walls = gameState.getWalls()
|
||||
assert not walls[x1][y1], 'point1 is a wall: ' + str(point1)
|
||||
assert not walls[x2][y2], 'point2 is a wall: ' + str(point2)
|
||||
prob = PositionSearchProblem(gameState, start=point1, goal=point2, warn=False, visualize=False)
|
||||
return len(search.bfs(prob))
|
@ -0,0 +1,823 @@
|
||||
# searchTestClasses.py
|
||||
# --------------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import sys
|
||||
import re
|
||||
import testClasses
|
||||
import textwrap
|
||||
|
||||
# import project specific code
|
||||
import layout
|
||||
import pacman
|
||||
from search import SearchProblem
|
||||
|
||||
# helper function for printing solutions in solution files
|
||||
def wrap_solution(solution):
|
||||
if type(solution) == type([]):
|
||||
return '\n'.join(textwrap.wrap(' '.join(solution)))
|
||||
else:
|
||||
return str(solution)
|
||||
|
||||
|
||||
|
||||
|
||||
def followAction(state, action, problem):
|
||||
for successor1, action1, cost1 in problem.getSuccessors(state):
|
||||
if action == action1: return successor1
|
||||
return None
|
||||
|
||||
def followPath(path, problem):
|
||||
state = problem.getStartState()
|
||||
states = [state]
|
||||
for action in path:
|
||||
state = followAction(state, action, problem)
|
||||
states.append(state)
|
||||
return states
|
||||
|
||||
def checkSolution(problem, path):
|
||||
state = problem.getStartState()
|
||||
for action in path:
|
||||
state = followAction(state, action, problem)
|
||||
return problem.isGoalState(state)
|
||||
|
||||
# Search problem on a plain graph
|
||||
class GraphSearch(SearchProblem):
|
||||
|
||||
# Read in the state graph; define start/end states, edges and costs
|
||||
def __init__(self, graph_text):
|
||||
self.expanded_states = []
|
||||
lines = graph_text.split('\n')
|
||||
r = re.match('start_state:(.*)', lines[0])
|
||||
if r == None:
|
||||
print("Broken graph:")
|
||||
print('"""%s"""' % graph_text)
|
||||
raise Exception("GraphSearch graph specification start_state not found or incorrect on line 0")
|
||||
self.start_state = r.group(1).strip()
|
||||
r = re.match('goal_states:(.*)', lines[1])
|
||||
if r == None:
|
||||
print("Broken graph:")
|
||||
print('"""%s"""' % graph_text)
|
||||
raise Exception("GraphSearch graph specification goal_states not found or incorrect on line 1")
|
||||
goals = r.group(1).split()
|
||||
self.goals = [str.strip(g) for g in goals]
|
||||
self.successors = {}
|
||||
all_states = set()
|
||||
self.orderedSuccessorTuples = []
|
||||
for l in lines[2:]:
|
||||
if len(l.split()) == 3:
|
||||
start, action, next_state = l.split()
|
||||
cost = 1
|
||||
elif len(l.split()) == 4:
|
||||
start, action, next_state, cost = l.split()
|
||||
else:
|
||||
print("Broken graph:")
|
||||
print('"""%s"""' % graph_text)
|
||||
raise Exception("Invalid line in GraphSearch graph specification on line:" + l)
|
||||
cost = float(cost)
|
||||
self.orderedSuccessorTuples.append((start, action, next_state, cost))
|
||||
all_states.add(start)
|
||||
all_states.add(next_state)
|
||||
if start not in self.successors:
|
||||
self.successors[start] = []
|
||||
self.successors[start].append((next_state, action, cost))
|
||||
for s in all_states:
|
||||
if s not in self.successors:
|
||||
self.successors[s] = []
|
||||
|
||||
# Get start state
|
||||
def getStartState(self):
|
||||
return self.start_state
|
||||
|
||||
# Check if a state is a goal state
|
||||
def isGoalState(self, state):
|
||||
return state in self.goals
|
||||
|
||||
# Get all successors of a state
|
||||
def getSuccessors(self, state):
|
||||
self.expanded_states.append(state)
|
||||
return list(self.successors[state])
|
||||
|
||||
# Calculate total cost of a sequence of actions
|
||||
def getCostOfActions(self, actions):
|
||||
total_cost = 0
|
||||
state = self.start_state
|
||||
for a in actions:
|
||||
successors = self.successors[state]
|
||||
match = False
|
||||
for (next_state, action, cost) in successors:
|
||||
if a == action:
|
||||
state = next_state
|
||||
total_cost += cost
|
||||
match = True
|
||||
if not match:
|
||||
print('invalid action sequence')
|
||||
sys.exit(1)
|
||||
return total_cost
|
||||
|
||||
# Return a list of all states on which 'getSuccessors' was called
|
||||
def getExpandedStates(self):
|
||||
return self.expanded_states
|
||||
|
||||
def __str__(self):
|
||||
print(self.successors)
|
||||
edges = ["%s %s %s %s" % t for t in self.orderedSuccessorTuples]
|
||||
return \
|
||||
"""start_state: %s
|
||||
goal_states: %s
|
||||
%s""" % (self.start_state, " ".join(self.goals), "\n".join(edges))
|
||||
|
||||
|
||||
|
||||
def parseHeuristic(heuristicText):
|
||||
heuristic = {}
|
||||
for line in heuristicText.split('\n'):
|
||||
tokens = line.split()
|
||||
if len(tokens) != 2:
|
||||
print("Broken heuristic:")
|
||||
print('"""%s"""' % heuristicText)
|
||||
raise Exception("GraphSearch heuristic specification broken at tokens:" + str(tokens))
|
||||
state, h = tokens
|
||||
heuristic[state] = float(h)
|
||||
|
||||
def graphHeuristic(state, problem=None):
|
||||
if state in heuristic:
|
||||
return heuristic[state]
|
||||
else:
|
||||
import pprint
|
||||
pp = pprint.PrettyPrinter(indent=4)
|
||||
print("Heuristic:")
|
||||
pp.pprint(heuristic)
|
||||
raise Exception("Graph heuristic called with invalid state: " + str(state))
|
||||
|
||||
return graphHeuristic
|
||||
|
||||
|
||||
class GraphSearchTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(GraphSearchTest, self).__init__(question, testDict)
|
||||
self.graph_text = testDict['graph']
|
||||
self.alg = testDict['algorithm']
|
||||
self.diagram = testDict['diagram']
|
||||
self.exactExpansionOrder = testDict.get('exactExpansionOrder', 'True').lower() == "true"
|
||||
if 'heuristic' in testDict:
|
||||
self.heuristic = parseHeuristic(testDict['heuristic'])
|
||||
else:
|
||||
self.heuristic = None
|
||||
|
||||
# Note that the return type of this function is a tripple:
|
||||
# (solution, expanded states, error message)
|
||||
def getSolInfo(self, search):
|
||||
alg = getattr(search, self.alg)
|
||||
problem = GraphSearch(self.graph_text)
|
||||
if self.heuristic != None:
|
||||
solution = alg(problem, self.heuristic)
|
||||
else:
|
||||
solution = alg(problem)
|
||||
|
||||
if type(solution) != type([]):
|
||||
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
|
||||
|
||||
return solution, problem.getExpandedStates(), None
|
||||
|
||||
# Run student code. If an error message is returned, print error and return false.
|
||||
# If a good solution is returned, printn the solution and return true; otherwise,
|
||||
# print both the correct and student's solution and return false.
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
|
||||
gold_expanded_states = [str.split(solutionDict['expanded_states']), str.split(solutionDict['rev_expanded_states'])]
|
||||
|
||||
solution, expanded_states, error = self.getSolInfo(search)
|
||||
if error != None:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\t%s' % error)
|
||||
return False
|
||||
|
||||
if solution in gold_solution and (not self.exactExpansionOrder or expanded_states in gold_expanded_states):
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tsolution:\t\t%s' % solution)
|
||||
grades.addMessage('\texpanded_states:\t%s' % expanded_states)
|
||||
return True
|
||||
else:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\tgraph:')
|
||||
for line in self.diagram.split('\n'):
|
||||
grades.addMessage('\t %s' % (line,))
|
||||
grades.addMessage('\tstudent solution:\t\t%s' % solution)
|
||||
grades.addMessage('\tstudent expanded_states:\t%s' % expanded_states)
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution:\t\t%s' % gold_solution[0])
|
||||
grades.addMessage('\tcorrect expanded_states:\t%s' % gold_expanded_states[0])
|
||||
grades.addMessage('\tcorrect rev_solution:\t\t%s' % gold_solution[1])
|
||||
grades.addMessage('\tcorrect rev_expanded_states:\t%s' % gold_expanded_states[1])
|
||||
return False
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
handle.write('# This solution is designed to support both right-to-left\n')
|
||||
handle.write('# and left-to-right implementations.\n')
|
||||
|
||||
# write forward solution
|
||||
solution, expanded_states, error = self.getSolInfo(search)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('solution: "%s"\n' % ' '.join(solution))
|
||||
handle.write('expanded_states: "%s"\n' % ' '.join(expanded_states))
|
||||
|
||||
# reverse and write backwards solution
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
solution, expanded_states, error = self.getSolInfo(search)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('rev_solution: "%s"\n' % ' '.join(solution))
|
||||
handle.write('rev_expanded_states: "%s"\n' % ' '.join(expanded_states))
|
||||
|
||||
# clean up
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
class PacmanSearchTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(PacmanSearchTest, self).__init__(question, testDict)
|
||||
self.layout_text = testDict['layout']
|
||||
self.alg = testDict['algorithm']
|
||||
self.layoutName = testDict['layoutName']
|
||||
|
||||
# TODO: sensible to have defaults like this?
|
||||
self.leewayFactor = float(testDict.get('leewayFactor', '1'))
|
||||
self.costFn = eval(testDict.get('costFn', 'None'))
|
||||
self.searchProblemClassName = testDict.get('searchProblemClass', 'PositionSearchProblem')
|
||||
self.heuristicName = testDict.get('heuristic', None)
|
||||
|
||||
|
||||
def getSolInfo(self, search, searchAgents):
|
||||
alg = getattr(search, self.alg)
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
start_state = pacman.GameState()
|
||||
start_state.initialize(lay, 0)
|
||||
|
||||
problemClass = getattr(searchAgents, self.searchProblemClassName)
|
||||
problemOptions = {}
|
||||
if self.costFn != None:
|
||||
problemOptions['costFn'] = self.costFn
|
||||
problem = problemClass(start_state, **problemOptions)
|
||||
heuristic = getattr(searchAgents, self.heuristicName) if self.heuristicName != None else None
|
||||
|
||||
if heuristic != None:
|
||||
solution = alg(problem, heuristic)
|
||||
else:
|
||||
solution = alg(problem)
|
||||
|
||||
if type(solution) != type([]):
|
||||
return None, None, 'The result of %s must be a list. (Instead, it is %s)' % (self.alg, type(solution))
|
||||
|
||||
from game import Directions
|
||||
dirs = Directions.LEFT.keys()
|
||||
if [el in dirs for el in solution].count(False) != 0:
|
||||
return None, None, 'Output of %s must be a list of actions from game.Directions' % self.alg
|
||||
|
||||
expanded = problem._expanded
|
||||
return solution, expanded, None
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_solution = [str.split(solutionDict['solution']), str.split(solutionDict['rev_solution'])]
|
||||
gold_expanded = max(int(solutionDict['expanded_nodes']), int(solutionDict['rev_expanded_nodes']))
|
||||
|
||||
solution, expanded, error = self.getSolInfo(search, searchAgents)
|
||||
if error != None:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('%s' % error)
|
||||
return False
|
||||
|
||||
# FIXME: do we want to standardize test output format?
|
||||
|
||||
if solution not in gold_solution:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Solution not correct.')
|
||||
grades.addMessage('\tstudent solution length: %s' % len(solution))
|
||||
grades.addMessage('\tstudent solution:\n%s' % wrap_solution(solution))
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution length: %s' % len(gold_solution[0]))
|
||||
grades.addMessage('\tcorrect (reversed) solution length: %s' % len(gold_solution[1]))
|
||||
grades.addMessage('\tcorrect solution:\n%s' % wrap_solution(gold_solution[0]))
|
||||
grades.addMessage('\tcorrect (reversed) solution:\n%s' % wrap_solution(gold_solution[1]))
|
||||
return False
|
||||
|
||||
if expanded > self.leewayFactor * gold_expanded and expanded > gold_expanded + 1:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Too many node expanded; are you expanding nodes twice?')
|
||||
grades.addMessage('\tstudent nodes expanded: %s' % expanded)
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect nodes expanded: %s (leewayFactor %s)' % (gold_expanded, self.leewayFactor))
|
||||
return False
|
||||
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
|
||||
grades.addMessage('\tsolution length: %s' % len(solution))
|
||||
grades.addMessage('\tnodes expanded:\t\t%s' % expanded)
|
||||
return True
|
||||
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
handle.write('# This solution is designed to support both right-to-left\n')
|
||||
handle.write('# and left-to-right implementations.\n')
|
||||
handle.write('# Number of nodes expanded must be with a factor of %s of the numbers below.\n' % self.leewayFactor)
|
||||
|
||||
# write forward solution
|
||||
solution, expanded, error = self.getSolInfo(search, searchAgents)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('solution: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.write('expanded_nodes: "%s"\n' % expanded)
|
||||
|
||||
# write backward solution
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
solution, expanded, error = self.getSolInfo(search, searchAgents)
|
||||
if error != None: raise Exception("Error in solution code: %s" % error)
|
||||
handle.write('rev_solution: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.write('rev_expanded_nodes: "%s"\n' % expanded)
|
||||
|
||||
# clean up
|
||||
search.REVERSE_PUSH = not search.REVERSE_PUSH
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
from game import Actions
|
||||
def getStatesFromPath(start, path):
|
||||
"Returns the list of states visited along the path"
|
||||
vis = [start]
|
||||
curr = start
|
||||
for a in path:
|
||||
x,y = curr
|
||||
dx, dy = Actions.directionToVector(a)
|
||||
curr = (int(x + dx), int(y + dy))
|
||||
vis.append(curr)
|
||||
return vis
|
||||
|
||||
class CornerProblemTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(CornerProblemTest, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
|
||||
def solution(self, search, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(gameState)
|
||||
path = search.bfs(problem)
|
||||
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
visited = getStatesFromPath(gameState.getPacmanPosition(), path)
|
||||
top, right = gameState.getWalls().height-2, gameState.getWalls().width-2
|
||||
missedCorners = [p for p in ((1,1), (1,top), (right, 1), (right, top)) if p not in visited]
|
||||
|
||||
return path, missedCorners
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_length = int(solutionDict['solution_length'])
|
||||
solution, missedCorners = self.solution(search, searchAgents)
|
||||
|
||||
if type(solution) != type([]):
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('The result must be a list. (Instead, it is %s)' % type(solution))
|
||||
return False
|
||||
|
||||
if len(missedCorners) != 0:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Corners missed: %s' % missedCorners)
|
||||
return False
|
||||
|
||||
if len(solution) != gold_length:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Optimal solution not found.')
|
||||
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
|
||||
return False
|
||||
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
|
||||
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
|
||||
print("Solving problem", self.layoutName)
|
||||
print(self.layoutText)
|
||||
|
||||
path, _ = self.solution(search, searchAgents)
|
||||
length = len(path)
|
||||
print("Problem solved")
|
||||
|
||||
handle.write('solution_length: "%s"\n' % length)
|
||||
handle.close()
|
||||
|
||||
|
||||
|
||||
|
||||
# template = """class: "HeuristicTest"
|
||||
#
|
||||
# heuristic: "foodHeuristic"
|
||||
# searchProblemClass: "FoodSearchProblem"
|
||||
# layoutName: "Test %s"
|
||||
# layout: \"\"\"
|
||||
# %s
|
||||
# \"\"\"
|
||||
# """
|
||||
#
|
||||
# for i, (_, _, l) in enumerate(doneTests + foodTests):
|
||||
# f = open("food_heuristic_%s.test" % (i+1), "w")
|
||||
# f.write(template % (i+1, "\n".join(l)))
|
||||
# f.close()
|
||||
|
||||
class HeuristicTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(HeuristicTest, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
self.searchProblemClassName = testDict['searchProblemClass']
|
||||
self.heuristicName = testDict['heuristic']
|
||||
|
||||
def setupProblem(self, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
problemClass = getattr(searchAgents, self.searchProblemClassName)
|
||||
problem = problemClass(gameState)
|
||||
state = problem.getStartState()
|
||||
heuristic = getattr(searchAgents, self.heuristicName)
|
||||
|
||||
return problem, state, heuristic
|
||||
|
||||
def checkHeuristic(self, heuristic, problem, state, solutionCost):
|
||||
h0 = heuristic(state, problem)
|
||||
|
||||
if solutionCost == 0:
|
||||
if h0 == 0:
|
||||
return True, ''
|
||||
else:
|
||||
return False, 'Heuristic failed H(goal) == 0 test'
|
||||
|
||||
if h0 < 0:
|
||||
return False, 'Heuristic failed H >= 0 test'
|
||||
if not h0 > 0:
|
||||
return False, 'Heuristic failed non-triviality test'
|
||||
if not h0 <= solutionCost:
|
||||
return False, 'Heuristic failed admissibility test'
|
||||
|
||||
for succ, action, stepCost in problem.getSuccessors(state):
|
||||
h1 = heuristic(succ, problem)
|
||||
if h1 < 0: return False, 'Heuristic failed H >= 0 test'
|
||||
if h0 - h1 > stepCost: return False, 'Heuristic failed consistency test'
|
||||
|
||||
return True, ''
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
solutionCost = int(solutionDict['solution_cost'])
|
||||
problem, state, heuristic = self.setupProblem(searchAgents)
|
||||
|
||||
passed, message = self.checkHeuristic(heuristic, problem, state, solutionCost)
|
||||
|
||||
if not passed:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('%s' % message)
|
||||
return False
|
||||
else:
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
|
||||
print("Solving problem", self.layoutName, self.heuristicName)
|
||||
print(self.layoutText)
|
||||
problem, _, heuristic = self.setupProblem(searchAgents)
|
||||
path = search.astar(problem, heuristic)
|
||||
cost = problem.getCostOfActions(path)
|
||||
print("Problem solved")
|
||||
|
||||
handle.write('solution_cost: "%s"\n' % cost)
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class HeuristicGrade(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(HeuristicGrade, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
self.searchProblemClassName = testDict['searchProblemClass']
|
||||
self.heuristicName = testDict['heuristic']
|
||||
self.basePoints = int(testDict['basePoints'])
|
||||
self.thresholds = [int(t) for t in testDict['gradingThresholds'].split()]
|
||||
|
||||
def setupProblem(self, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
problemClass = getattr(searchAgents, self.searchProblemClassName)
|
||||
problem = problemClass(gameState)
|
||||
state = problem.getStartState()
|
||||
heuristic = getattr(searchAgents, self.heuristicName)
|
||||
|
||||
return problem, state, heuristic
|
||||
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
problem, _, heuristic = self.setupProblem(searchAgents)
|
||||
|
||||
path = search.astar(problem, heuristic)
|
||||
|
||||
expanded = problem._expanded
|
||||
|
||||
if not checkSolution(problem, path):
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\tReturned path is not a solution.')
|
||||
grades.addMessage('\tpath returned by astar: %s' % expanded)
|
||||
return False
|
||||
|
||||
grades.addPoints(self.basePoints)
|
||||
points = 0
|
||||
for threshold in self.thresholds:
|
||||
if expanded <= threshold:
|
||||
points += 1
|
||||
grades.addPoints(points)
|
||||
if points >= len(self.thresholds):
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
else:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\texpanded nodes: %s' % expanded)
|
||||
grades.addMessage('\tthresholds: %s' % self.thresholds)
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
handle.write('# File intentionally blank.\n')
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# template = """class: "ClosestDotTest"
|
||||
#
|
||||
# layoutName: "Test %s"
|
||||
# layout: \"\"\"
|
||||
# %s
|
||||
# \"\"\"
|
||||
# """
|
||||
#
|
||||
# for i, (_, _, l) in enumerate(foodTests):
|
||||
# f = open("closest_dot_%s.test" % (i+1), "w")
|
||||
# f.write(template % (i+1, "\n".join(l)))
|
||||
# f.close()
|
||||
|
||||
class ClosestDotTest(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(ClosestDotTest, self).__init__(question, testDict)
|
||||
self.layoutText = testDict['layout']
|
||||
self.layoutName = testDict['layoutName']
|
||||
|
||||
def solution(self, searchAgents):
|
||||
lay = layout.Layout([l.strip() for l in self.layoutText.split('\n')])
|
||||
gameState = pacman.GameState()
|
||||
gameState.initialize(lay, 0)
|
||||
path = searchAgents.ClosestDotSearchAgent().findPathToClosestDot(gameState)
|
||||
return path
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
gold_length = int(solutionDict['solution_length'])
|
||||
solution = self.solution(searchAgents)
|
||||
|
||||
if type(solution) != type([]):
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('\tThe result must be a list. (Instead, it is %s)' % type(solution))
|
||||
return False
|
||||
|
||||
if len(solution) != gold_length:
|
||||
grades.addMessage('FAIL: %s' % self.path)
|
||||
grades.addMessage('Closest dot not found.')
|
||||
grades.addMessage('\tstudent solution length:\n%s' % len(solution))
|
||||
grades.addMessage('')
|
||||
grades.addMessage('\tcorrect solution length:\n%s' % gold_length)
|
||||
return False
|
||||
|
||||
grades.addMessage('PASS: %s' % self.path)
|
||||
grades.addMessage('\tpacman layout:\t\t%s' % self.layoutName)
|
||||
grades.addMessage('\tsolution length:\t\t%s' % len(solution))
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# open file and write comments
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This is the solution file for %s.\n' % self.path)
|
||||
|
||||
print("Solving problem", self.layoutName)
|
||||
print(self.layoutText)
|
||||
|
||||
length = len(self.solution(searchAgents))
|
||||
print("Problem solved")
|
||||
|
||||
handle.write('solution_length: "%s"\n' % length)
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
|
||||
class CornerHeuristicSanity(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(CornerHeuristicSanity, self).__init__(question, testDict)
|
||||
self.layout_text = testDict['layout']
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
game_state = pacman.GameState()
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
game_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(game_state)
|
||||
start_state = problem.getStartState()
|
||||
h0 = searchAgents.cornersHeuristic(start_state, problem)
|
||||
succs = problem.getSuccessors(start_state)
|
||||
# cornerConsistencyA
|
||||
for succ in succs:
|
||||
h1 = searchAgents.cornersHeuristic(succ[0], problem)
|
||||
if h0 - h1 > 1:
|
||||
grades.addMessage('FAIL: inconsistent heuristic')
|
||||
return False
|
||||
heuristic_cost = searchAgents.cornersHeuristic(start_state, problem)
|
||||
true_cost = float(solutionDict['cost'])
|
||||
# cornerNontrivial
|
||||
if heuristic_cost == 0:
|
||||
grades.addMessage('FAIL: must use non-trivial heuristic')
|
||||
return False
|
||||
# cornerAdmissible
|
||||
if heuristic_cost > true_cost:
|
||||
grades.addMessage('FAIL: Inadmissible heuristic')
|
||||
return False
|
||||
path = solutionDict['path'].split()
|
||||
states = followPath(path, problem)
|
||||
heuristics = []
|
||||
for state in states:
|
||||
heuristics.append(searchAgents.cornersHeuristic(state, problem))
|
||||
for i in range(0, len(heuristics) - 1):
|
||||
h0 = heuristics[i]
|
||||
h1 = heuristics[i+1]
|
||||
# cornerConsistencyB
|
||||
if h0 - h1 > 1:
|
||||
grades.addMessage('FAIL: inconsistent heuristic')
|
||||
return False
|
||||
# cornerPosH
|
||||
if h0 < 0 or h1 <0:
|
||||
grades.addMessage('FAIL: non-positive heuristic')
|
||||
return False
|
||||
# cornerGoalH
|
||||
if heuristics[len(heuristics) - 1] != 0:
|
||||
grades.addMessage('FAIL: heuristic non-zero at goal')
|
||||
return False
|
||||
grades.addMessage('PASS: heuristic value less than true cost at start state')
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# write comment
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# In order for a heuristic to be admissible, the value\n')
|
||||
handle.write('# of the heuristic must be less at each state than the\n')
|
||||
handle.write('# true cost of the optimal path from that state to a goal.\n')
|
||||
|
||||
# solve problem and write solution
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
start_state = pacman.GameState()
|
||||
start_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(start_state)
|
||||
solution = search.astar(problem, searchAgents.cornersHeuristic)
|
||||
handle.write('cost: "%d"\n' % len(solution))
|
||||
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.close()
|
||||
return True
|
||||
|
||||
|
||||
|
||||
class CornerHeuristicPacman(testClasses.TestCase):
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
super(CornerHeuristicPacman, self).__init__(question, testDict)
|
||||
self.layout_text = testDict['layout']
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
total = 0
|
||||
true_cost = float(solutionDict['cost'])
|
||||
thresholds = [int(x) for x in solutionDict['thresholds'].split()]
|
||||
game_state = pacman.GameState()
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
game_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(game_state)
|
||||
start_state = problem.getStartState()
|
||||
if searchAgents.cornersHeuristic(start_state, problem) > true_cost:
|
||||
grades.addMessage('FAIL: Inadmissible heuristic')
|
||||
return False
|
||||
path = search.astar(problem, searchAgents.cornersHeuristic)
|
||||
print("path:", path)
|
||||
print("path length:", len(path))
|
||||
cost = problem.getCostOfActions(path)
|
||||
if cost > true_cost:
|
||||
grades.addMessage('FAIL: Inconsistent heuristic')
|
||||
return False
|
||||
expanded = problem._expanded
|
||||
points = 0
|
||||
for threshold in thresholds:
|
||||
if expanded <= threshold:
|
||||
points += 1
|
||||
grades.addPoints(points)
|
||||
if points >= len(thresholds):
|
||||
grades.addMessage('PASS: Heuristic resulted in expansion of %d nodes' % expanded)
|
||||
else:
|
||||
grades.addMessage('FAIL: Heuristic resulted in expansion of %d nodes' % expanded)
|
||||
return True
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
search = moduleDict['search']
|
||||
searchAgents = moduleDict['searchAgents']
|
||||
# write comment
|
||||
handle = open(filePath, 'w')
|
||||
handle.write('# This solution file specifies the length of the optimal path\n')
|
||||
handle.write('# as well as the thresholds on number of nodes expanded to be\n')
|
||||
handle.write('# used in scoring.\n')
|
||||
|
||||
# solve problem and write solution
|
||||
lay = layout.Layout([l.strip() for l in self.layout_text.split('\n')])
|
||||
start_state = pacman.GameState()
|
||||
start_state.initialize(lay, 0)
|
||||
problem = searchAgents.CornersProblem(start_state)
|
||||
solution = search.astar(problem, searchAgents.cornersHeuristic)
|
||||
handle.write('cost: "%d"\n' % len(solution))
|
||||
handle.write('path: """\n%s\n"""\n' % wrap_solution(solution))
|
||||
handle.write('thresholds: "2000 1600 1200"\n')
|
||||
handle.close()
|
||||
return True
|
||||
|
@ -0,0 +1,206 @@
|
||||
# testClasses.py
|
||||
# --------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
# import modules from python standard library
|
||||
import inspect
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
# Class which models a question in a project. Note that questions have a
|
||||
# maximum number of points they are worth, and are composed of a series of
|
||||
# test cases
|
||||
class Question(object):
|
||||
|
||||
def raiseNotDefined(self):
|
||||
print('Method not implemented: %s' % inspect.stack()[1][3])
|
||||
sys.exit(1)
|
||||
|
||||
def __init__(self, questionDict, display):
|
||||
self.maxPoints = int(questionDict['max_points'])
|
||||
self.testCases = []
|
||||
self.display = display
|
||||
|
||||
def getDisplay(self):
|
||||
return self.display
|
||||
|
||||
def getMaxPoints(self):
|
||||
return self.maxPoints
|
||||
|
||||
# Note that 'thunk' must be a function which accepts a single argument,
|
||||
# namely a 'grading' object
|
||||
def addTestCase(self, testCase, thunk):
|
||||
self.testCases.append((testCase, thunk))
|
||||
|
||||
def execute(self, grades):
|
||||
self.raiseNotDefined()
|
||||
|
||||
# Question in which all test cases must be passed in order to receive credit
|
||||
class PassAllTestsQuestion(Question):
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
testsFailed = False
|
||||
grades.assignZeroCredit()
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
testsFailed = True
|
||||
if testsFailed:
|
||||
grades.fail("Tests failed.")
|
||||
else:
|
||||
grades.assignFullCredit()
|
||||
|
||||
class ExtraCreditPassAllTestsQuestion(Question):
|
||||
def __init__(self, questionDict, display):
|
||||
Question.__init__(self, questionDict, display)
|
||||
self.extraPoints = int(questionDict['extra_points'])
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
testsFailed = False
|
||||
grades.assignZeroCredit()
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
testsFailed = True
|
||||
if testsFailed:
|
||||
grades.fail("Tests failed.")
|
||||
else:
|
||||
grades.assignFullCredit()
|
||||
grades.addPoints(self.extraPoints)
|
||||
|
||||
# Question in which predict credit is given for test cases with a ``points'' property.
|
||||
# All other tests are mandatory and must be passed.
|
||||
class HackedPartialCreditQuestion(Question):
|
||||
|
||||
def execute(self, grades):
|
||||
# TODO: is this the right way to use grades? The autograder doesn't seem to use it.
|
||||
grades.assignZeroCredit()
|
||||
|
||||
points = 0
|
||||
passed = True
|
||||
for testCase, f in self.testCases:
|
||||
testResult = f(grades)
|
||||
if "points" in testCase.testDict:
|
||||
if testResult: points += float(testCase.testDict["points"])
|
||||
else:
|
||||
passed = passed and testResult
|
||||
|
||||
## FIXME: Below terrible hack to match q3's logic
|
||||
if int(points) == self.maxPoints and not passed:
|
||||
grades.assignZeroCredit()
|
||||
else:
|
||||
grades.addPoints(int(points))
|
||||
|
||||
|
||||
class Q6PartialCreditQuestion(Question):
|
||||
"""Fails any test which returns False, otherwise doesn't effect the grades object.
|
||||
Partial credit tests will add the required points."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.assignZeroCredit()
|
||||
|
||||
results = []
|
||||
for _, f in self.testCases:
|
||||
results.append(f(grades))
|
||||
if False in results:
|
||||
grades.assignZeroCredit()
|
||||
|
||||
class PartialCreditQuestion(Question):
|
||||
"""Fails any test which returns False, otherwise doesn't effect the grades object.
|
||||
Partial credit tests will add the required points."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.assignZeroCredit()
|
||||
|
||||
for _, f in self.testCases:
|
||||
if not f(grades):
|
||||
grades.assignZeroCredit()
|
||||
grades.fail("Tests failed.")
|
||||
return False
|
||||
|
||||
|
||||
|
||||
class NumberPassedQuestion(Question):
|
||||
"""Grade is the number of test cases passed."""
|
||||
|
||||
def execute(self, grades):
|
||||
grades.addPoints([f(grades) for _, f in self.testCases].count(True))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Template modeling a generic test case
|
||||
class TestCase(object):
|
||||
|
||||
def raiseNotDefined(self):
|
||||
print('Method not implemented: %s' % inspect.stack()[1][3])
|
||||
sys.exit(1)
|
||||
|
||||
def getPath(self):
|
||||
return self.path
|
||||
|
||||
def __init__(self, question, testDict):
|
||||
self.question = question
|
||||
self.testDict = testDict
|
||||
self.path = testDict['path']
|
||||
self.messages = []
|
||||
|
||||
def __str__(self):
|
||||
self.raiseNotDefined()
|
||||
|
||||
def execute(self, grades, moduleDict, solutionDict):
|
||||
self.raiseNotDefined()
|
||||
|
||||
def writeSolution(self, moduleDict, filePath):
|
||||
self.raiseNotDefined()
|
||||
return True
|
||||
|
||||
# Tests should call the following messages for grading
|
||||
# to ensure a uniform format for test output.
|
||||
#
|
||||
# TODO: this is hairy, but we need to fix grading.py's interface
|
||||
# to get a nice hierarchical project - question - test structure,
|
||||
# then these should be moved into Question proper.
|
||||
def testPass(self, grades):
|
||||
grades.addMessage('PASS: %s' % (self.path,))
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
return True
|
||||
|
||||
def testFail(self, grades):
|
||||
grades.addMessage('FAIL: %s' % (self.path,))
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
return False
|
||||
|
||||
# This should really be question level?
|
||||
#
|
||||
def testPartial(self, grades, points, maxPoints):
|
||||
grades.addPoints(points)
|
||||
extraCredit = max(0, points - maxPoints)
|
||||
regularCredit = points - extraCredit
|
||||
|
||||
grades.addMessage('%s: %s (%s of %s points)' % ("PASS" if points >= maxPoints else "FAIL", self.path, regularCredit, maxPoints))
|
||||
if extraCredit > 0:
|
||||
grades.addMessage('EXTRA CREDIT: %s points' % (extraCredit,))
|
||||
|
||||
for line in self.messages:
|
||||
grades.addMessage(' %s' % (line,))
|
||||
|
||||
return True
|
||||
|
||||
def addMessage(self, message):
|
||||
self.messages.extend(message.split('\n'))
|
||||
|
@ -0,0 +1,85 @@
|
||||
# testParser.py
|
||||
# -------------
|
||||
# Licensing Information: You are free to use or extend these projects for
|
||||
# educational purposes provided that (1) you do not distribute or publish
|
||||
# solutions, (2) you retain this notice, and (3) you provide clear
|
||||
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
|
||||
#
|
||||
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
|
||||
# The core projects and autograders were primarily created by John DeNero
|
||||
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
|
||||
# Student side autograding was added by Brad Miller, Nick Hay, and
|
||||
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
|
||||
|
||||
|
||||
import re
|
||||
import sys
|
||||
|
||||
class TestParser(object):
|
||||
|
||||
def __init__(self, path):
|
||||
# save the path to the test file
|
||||
self.path = path
|
||||
|
||||
def removeComments(self, rawlines):
|
||||
# remove any portion of a line following a '#' symbol
|
||||
fixed_lines = []
|
||||
for l in rawlines:
|
||||
idx = l.find('#')
|
||||
if idx == -1:
|
||||
fixed_lines.append(l)
|
||||
else:
|
||||
fixed_lines.append(l[0:idx])
|
||||
return '\n'.join(fixed_lines)
|
||||
|
||||
def parse(self):
|
||||
# read in the test case and remove comments
|
||||
test = {}
|
||||
with open(self.path) as handle:
|
||||
raw_lines = handle.read().split('\n')
|
||||
|
||||
test_text = self.removeComments(raw_lines)
|
||||
test['__raw_lines__'] = raw_lines
|
||||
test['path'] = self.path
|
||||
test['__emit__'] = []
|
||||
lines = test_text.split('\n')
|
||||
i = 0
|
||||
# read a property in each loop cycle
|
||||
while(i < len(lines)):
|
||||
# skip blank lines
|
||||
if re.match('\A\s*\Z', lines[i]):
|
||||
test['__emit__'].append(("raw", raw_lines[i]))
|
||||
i += 1
|
||||
continue
|
||||
m = re.match('\A([^"]*?):\s*"([^"]*)"\s*\Z', lines[i])
|
||||
if m:
|
||||
test[m.group(1)] = m.group(2)
|
||||
test['__emit__'].append(("oneline", m.group(1)))
|
||||
i += 1
|
||||
continue
|
||||
m = re.match('\A([^"]*?):\s*"""\s*\Z', lines[i])
|
||||
if m:
|
||||
msg = []
|
||||
i += 1
|
||||
while(not re.match('\A\s*"""\s*\Z', lines[i])):
|
||||
msg.append(raw_lines[i])
|
||||
i += 1
|
||||
test[m.group(1)] = '\n'.join(msg)
|
||||
test['__emit__'].append(("multiline", m.group(1)))
|
||||
i += 1
|
||||
continue
|
||||
print('error parsing test file: %s' % self.path)
|
||||
sys.exit(1)
|
||||
return test
|
||||
|
||||
|
||||
def emitTestDict(testDict, handle):
|
||||
for kind, data in testDict['__emit__']:
|
||||
if kind == "raw":
|
||||
handle.write(data + "\n")
|
||||
elif kind == "oneline":
|
||||
handle.write('%s: "%s"\n' % (data, testDict[data]))
|
||||
elif kind == "multiline":
|
||||
handle.write('%s: """\n%s\n"""\n' % (data, testDict[data]))
|
||||
else:
|
||||
raise Exception("Bad __emit__")
|
@ -0,0 +1 @@
|
||||
order: "q1 q2 q3 q4 q5 q6 q7 q8"
|
@ -0,0 +1,2 @@
|
||||
max_points: "3"
|
||||
class: "PassAllTestsQuestion"
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_backtrack.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->C 0:C->G"
|
||||
expanded_states: "A D C"
|
||||
rev_solution: "1:A->C 0:C->G"
|
||||
rev_expanded_states: "A B C"
|
@ -0,0 +1,32 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B
|
||||
^
|
||||
|
|
||||
*A --> C --> G
|
||||
|
|
||||
V
|
||||
D
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This tests whether
|
||||
you extract the sequence of actions correctly even
|
||||
if your search backtracks. If you fail this, your
|
||||
nodes are not correctly tracking the sequences of
|
||||
actions required to reach them.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->D D 4.0
|
||||
C 0:C->G G 8.0
|
||||
"""
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_bfs_vs_dfs.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "2:A->D 0:D->G"
|
||||
expanded_states: "A D"
|
||||
rev_solution: "0:A->B 0:B->D 0:D->G"
|
||||
rev_expanded_states: "A B D"
|
@ -0,0 +1,30 @@
|
||||
# Graph where BFS finds the optimal solution but DFS does not
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
/-- B
|
||||
| ^
|
||||
| |
|
||||
| *A -->[G]
|
||||
| | ^
|
||||
| V |
|
||||
\-->D ----/
|
||||
|
||||
A is the start state, G is the goal. Arrows
|
||||
mark possible transitions
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->G G 2.0
|
||||
A 2:A->D D 4.0
|
||||
B 0:B->D D 8.0
|
||||
D 0:D->G G 16.0
|
||||
"""
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_infinite.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "0:A->B 1:B->C 1:C->G"
|
||||
expanded_states: "A B C"
|
||||
rev_solution: "0:A->B 1:B->C 1:C->G"
|
||||
rev_expanded_states: "A B C"
|
@ -0,0 +1,30 @@
|
||||
# Graph where natural action choice leads to an infinite loop
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B <--> C
|
||||
^ /|
|
||||
| / |
|
||||
V / V
|
||||
*A<-/ [G]
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
B 0:B->A A 2.0
|
||||
B 1:B->C C 4.0
|
||||
C 0:C->A A 8.0
|
||||
C 1:C->G G 16.0
|
||||
C 2:C->B B 32.0
|
||||
"""
|
||||
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q1/graph_manypaths.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "2:A->B2 0:B2->C 0:C->D 2:D->E2 0:E2->F 0:F->G"
|
||||
expanded_states: "A B2 C D E2 F"
|
||||
rev_solution: "0:A->B1 0:B1->C 0:C->D 0:D->E1 0:E1->F 0:F->G"
|
||||
rev_expanded_states: "A B1 C D E1 F"
|
@ -0,0 +1,39 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B1 E1
|
||||
^ \ ^ \
|
||||
/ V / V
|
||||
*A --> C --> D --> F --> [G]
|
||||
\ ^ \ ^
|
||||
V / V /
|
||||
B2 E2
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This graph has multiple
|
||||
paths to the goal, where nodes with the same state
|
||||
are added to the fringe multiple times before they
|
||||
are expanded.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B1 B1 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->B2 B2 4.0
|
||||
B1 0:B1->C C 8.0
|
||||
B2 0:B2->C C 16.0
|
||||
C 0:C->D D 32.0
|
||||
D 0:D->E1 E1 64.0
|
||||
D 1:D->F F 128.0
|
||||
D 2:D->E2 E2 256.0
|
||||
E1 0:E1->F F 512.0
|
||||
E2 0:E2->F F 1024.0
|
||||
F 0:F->G G 2048.0
|
||||
"""
|
@ -0,0 +1,40 @@
|
||||
# This is the solution file for test_cases/q1/pacman_1.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
# Number of nodes expanded must be with a factor of 1.0 of the numbers below.
|
||||
solution: """
|
||||
West West West West West West West West West West West West West West
|
||||
West West West West West West West West West West West West West West
|
||||
West West West West West South South South South South South South
|
||||
South South East East East North North North North North North North
|
||||
East East South South South South South South East East North North
|
||||
North North North North East East South South South South East East
|
||||
North North East East East East East East East East South South South
|
||||
East East East East East East East South South South South South South
|
||||
South West West West West West West West West West West West West West
|
||||
West West West West South West West West West West West West West West
|
||||
"""
|
||||
expanded_nodes: "146"
|
||||
rev_solution: """
|
||||
South South West West West West South South East East East East South
|
||||
South West West West West South South East East East East South South
|
||||
West West West West South South South East North East East East South
|
||||
South South West West West West West West West North North North North
|
||||
North North North North West West West West West West West North North
|
||||
North East East East East South East East East North North North West
|
||||
West North North West West West West West West West West West West
|
||||
West West West West West West West West West West West West West West
|
||||
South South South South South South South South South East East East
|
||||
North North North North North North North East East South South South
|
||||
South South South East East North North North North North North East
|
||||
East South South South South East East North North North North East
|
||||
East East East East South South West West West South South East East
|
||||
East South South West West West West West West South South West West
|
||||
West West West South West West West West West South South East East
|
||||
East East East East East North East East East East East North North
|
||||
East East East East East East North East East East East East South
|
||||
South West West West South West West West West West West South South
|
||||
West West West West West South West West West West West West West West
|
||||
West
|
||||
"""
|
||||
rev_expanded_nodes: "269"
|
@ -0,0 +1,27 @@
|
||||
# This is a basic depth first search test
|
||||
class: "PacmanSearchTest"
|
||||
algorithm: "depthFirstSearch"
|
||||
|
||||
# The following specifies the layout to be used
|
||||
layoutName: "mediumMaze"
|
||||
layout: """
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% P%
|
||||
% %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% %
|
||||
% %% % % %%%%%%% %% %
|
||||
% %% % % % % %%%% %%%%%%%%% %% %%%%%
|
||||
% %% % % % % %% %% %
|
||||
% %% % % % % % %%%% %%% %%%%%% %
|
||||
% % % % % % %% %%%%%%%% %
|
||||
% %% % % %%%%%%%% %% %% %%%%%
|
||||
% %% % %% %%%%%%%%% %% %
|
||||
% %%%%%% %%%%%%% %% %%%%%% %
|
||||
%%%%%% % %%%% %% % %
|
||||
% %%%%%% %%%%% % %% %% %%%%%
|
||||
% %%%%%% % %%%%% %% %
|
||||
% %%%%%% %%%%%%%%%%% %% %% %
|
||||
%%%%%%%%%% %%%%%% %
|
||||
%. %%%%%%%%%%%%%%%% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
"""
|
||||
|
@ -0,0 +1,2 @@
|
||||
max_points: "3"
|
||||
class: "PassAllTestsQuestion"
|
@ -0,0 +1,7 @@
|
||||
# This is the solution file for test_cases/q2/graph_backtrack.test.
|
||||
# This solution is designed to support both right-to-left
|
||||
# and left-to-right implementations.
|
||||
solution: "1:A->C 0:C->G"
|
||||
expanded_states: "A B C D"
|
||||
rev_solution: "1:A->C 0:C->G"
|
||||
rev_expanded_states: "A D C B"
|
@ -0,0 +1,32 @@
|
||||
class: "GraphSearchTest"
|
||||
algorithm: "breadthFirstSearch"
|
||||
|
||||
diagram: """
|
||||
B
|
||||
^
|
||||
|
|
||||
*A --> C --> G
|
||||
|
|
||||
V
|
||||
D
|
||||
|
||||
A is the start state, G is the goal. Arrows mark
|
||||
possible state transitions. This tests whether
|
||||
you extract the sequence of actions correctly even
|
||||
if your search backtracks. If you fail this, your
|
||||
nodes are not correctly tracking the sequences of
|
||||
actions required to reach them.
|
||||
"""
|
||||
# The following section specifies the search problem and the solution.
|
||||
# The graph is specified by first the set of start states, followed by
|
||||
# the set of goal states, and lastly by the state transitions which are
|
||||
# of the form:
|
||||
# <start state> <actions> <end state> <cost>
|
||||
graph: """
|
||||
start_state: A
|
||||
goal_states: G
|
||||
A 0:A->B B 1.0
|
||||
A 1:A->C C 2.0
|
||||
A 2:A->D D 4.0
|
||||
C 0:C->G G 8.0
|
||||
"""
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue