You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pp6hrvtlm/easypr/core/CoreFunc.java

270 lines
8.5 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

package com.yuxue.easypr.core;
import org.bytedeco.javacpp.BytePointer;
import org.bytedeco.javacpp.opencv_core;
import org.bytedeco.javacpp.opencv_core.Mat;
import org.bytedeco.javacpp.opencv_core.MatVector;
import org.bytedeco.javacpp.opencv_core.Size;
import org.bytedeco.javacpp.opencv_highgui;
import org.bytedeco.javacpp.opencv_imgproc;
import org.bytedeco.javacpp.indexer.FloatIndexer;
import com.yuxue.enumtype.Direction;
import com.yuxue.enumtype.PlateColor;
/**
*
* @author yuxue
* @date 2020-05-16 21:09
*/
public class CoreFunc {
/**
* 根据一幅图像与颜色模板获取对应的二值图
*
* @param src
* 输入RGB图像
* @param r
* 颜色模板(蓝色、黄色)
* @param adaptive_minsv
* S和V的最小值由adaptive_minsv这个bool值判断
* <ul>
* <li>如果为true则最小值取决于H值按比例衰减
* <li>如果为false则不再自适应使用固定的最小值minabs_sv
* </ul>
* @return 输出灰度图只有0和255两个值255代表匹配0代表不匹配
*/
public static Mat colorMatch(final Mat src, final PlateColor r, final boolean adaptive_minsv) {
final float max_sv = 255;
final float minref_sv = 64;
final float minabs_sv = 95;
// 转到HSV空间进行处理颜色搜索主要使用的是H分量进行蓝色与黄色的匹配工作
Mat src_hsv = new Mat();
opencv_imgproc.cvtColor(src, src_hsv, opencv_imgproc.CV_BGR2HSV);
MatVector hsvSplit = new MatVector();
opencv_core.split(src_hsv, hsvSplit);
opencv_imgproc.equalizeHist(hsvSplit.get(2), hsvSplit.get(2));
opencv_core.merge(hsvSplit, src_hsv);
// 匹配模板基色,切换以查找想要的基色
int min_h = r.minH;
int max_h = r.maxH;
float diff_h = (float) ((max_h - min_h) / 2);
int avg_h = (int) (min_h + diff_h);
int channels = src_hsv.channels();
int nRows = src_hsv.rows();
// 图像数据列需要考虑通道数的影响;
int nCols = src_hsv.cols() * channels;
// 连续存储的数据,按一行处理
if (src_hsv.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
for (int i = 0; i < nRows; ++i) {
BytePointer p = src_hsv.ptr(i);
for (int j = 0; j < nCols; j += 3) {
int H = p.get(j) & 0xFF;
int S = p.get(j + 1) & 0xFF;
int V = p.get(j + 2) & 0xFF;
boolean colorMatched = false;
if (H > min_h && H < max_h) {
int Hdiff = 0;
if (H > avg_h)
Hdiff = H - avg_h;
else
Hdiff = avg_h - H;
float Hdiff_p = Hdiff / diff_h;
float min_sv = 0;
if (true == adaptive_minsv)
min_sv = minref_sv - minref_sv / 2 * (1 - Hdiff_p);
else
min_sv = minabs_sv;
if ((S > min_sv && S <= max_sv) && (V > min_sv && V <= max_sv))
colorMatched = true;
}
if (colorMatched == true) {
p.put(j, (byte) 0);
p.put(j + 1, (byte) 0);
p.put(j + 2, (byte) 255);
} else {
p.put(j, (byte) 0);
p.put(j + 1, (byte) 0);
p.put(j + 2, (byte) 0);
}
}
}
// 获取颜色匹配后的二值灰度图
MatVector hsvSplit_done = new MatVector();
opencv_core.split(src_hsv, hsvSplit_done);
Mat src_grey = hsvSplit_done.get(2);
return src_grey;
}
/**
* 判断一个车牌的颜色
*
* @param src
* 车牌mat
* @param r
* 颜色模板
* @param adaptive_minsv
* S和V的最小值由adaptive_minsv这个bool值判断
* <ul>
* <li>如果为true则最小值取决于H值按比例衰减
* <li>如果为false则不再自适应使用固定的最小值minabs_sv
* </ul>
* @return
*/
public static boolean plateColorJudge(final Mat src, final PlateColor color, final boolean adaptive_minsv) {
// 判断阈值
final float thresh = 0.49f;
Mat gray = colorMatch(src, color, adaptive_minsv);
float percent = (float) opencv_core.countNonZero(gray) / (gray.rows() * gray.cols());
return (percent > thresh) ? true : false;
}
/**
* getPlateType 判断车牌的类型
*
* @param src
* @param adaptive_minsv
* S和V的最小值由adaptive_minsv这个bool值判断
* <ul>
* <li>如果为true则最小值取决于H值按比例衰减
* <li>如果为false则不再自适应使用固定的最小值minabs_sv
* </ul>
* @return
*/
public static PlateColor getPlateType(final Mat src, final boolean adaptive_minsv) {
if (plateColorJudge(src, PlateColor.BLUE, adaptive_minsv) == true) {
return PlateColor.BLUE;
} else if (plateColorJudge(src, PlateColor.YELLOW, adaptive_minsv) == true) {
return PlateColor.YELLOW;
} else if (plateColorJudge(src, PlateColor.GREEN, adaptive_minsv) == true) {
return PlateColor.GREEN;
} else {
return PlateColor.UNKNOWN;
}
}
/**
* 获取垂直或水平方向直方图
*
* @param img
* @param direction
* @return
*/
public static float[] projectedHistogram(final Mat img, Direction direction) {
int sz = 0;
switch (direction) {
case HORIZONTAL:
sz = img.rows();
break;
case VERTICAL:
sz = img.cols();
break;
default:
break;
}
// 统计这一行或一列中非零元素的个数并保存到nonZeroMat中
float[] nonZeroMat = new float[sz];
opencv_core.extractChannel(img, img, 0);
for (int j = 0; j < sz; j++) {
Mat data = (direction == Direction.HORIZONTAL) ? img.row(j) : img.col(j);
int count = opencv_core.countNonZero(data);
nonZeroMat[j] = count;
}
// Normalize histogram
float max = 0;
for (int j = 0; j < nonZeroMat.length; ++j) {
max = Math.max(max, nonZeroMat[j]);
}
if (max > 0) {
for (int j = 0; j < nonZeroMat.length; ++j) {
nonZeroMat[j] /= max;
}
}
return nonZeroMat;
}
/**
* Assign values to feature
* <p>
* 样本特征为水平、垂直直方图和低分辨率图像所组成的矢量
*
* @param in
* @param sizeData
* 低分辨率图像size = sizeData*sizeData, 可以为0
* @return
*/
public static Mat features(final Mat in, final int sizeData) {
float[] vhist = projectedHistogram(in, Direction.VERTICAL);
float[] hhist = projectedHistogram(in, Direction.HORIZONTAL);
Mat lowData = new Mat();
if (sizeData > 0) {
// resize.cpp:3784: error: (-215:Assertion failed) !ssize.empty() in function 'cv::resize'
opencv_imgproc.resize(in, lowData, new Size(sizeData, sizeData));
}
int numCols = vhist.length + hhist.length + lowData.cols() * lowData.rows();
Mat out = Mat.zeros(1, numCols, opencv_core.CV_32F).asMat();
FloatIndexer idx = out.createIndexer();
int j = 0;
for (int i = 0; i < vhist.length; ++i, ++j) {
idx.put(0, j, vhist[i]);
}
for (int i = 0; i < hhist.length; ++i, ++j) {
idx.put(0, j, hhist[i]);
}
for (int x = 0; x < lowData.cols(); x++) {
for (int y = 0; y < lowData.rows(); y++, ++j) {
float val = lowData.ptr(x, y).get(0) & 0xFF;
idx.put(0, j, val);
}
}
return out;
}
/**
* 显示图像
* @param title
* @param src
*/
public static void showImage(final String title, final Mat src) {
if (src != null) {
opencv_highgui.imshow(title, src);
opencv_highgui.cvWaitKey(0);
}
}
}