You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
6.1 KiB
225 lines
6.1 KiB
"""
|
|
A_star 2D
|
|
@author: huiming zhou
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import math
|
|
import heapq
|
|
|
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../PaddleClas-release-2.3")
|
|
|
|
from Search_2D import plotting, env
|
|
|
|
|
|
class AStar:
|
|
"""AStar set the cost + heuristics as the priority
|
|
"""
|
|
def __init__(self, s_start, s_goal, heuristic_type):
|
|
self.s_start = s_start
|
|
self.s_goal = s_goal
|
|
self.heuristic_type = heuristic_type
|
|
|
|
self.Env = env.Env() # class Env
|
|
|
|
self.u_set = self.Env.motions # feasible input set
|
|
self.obs = self.Env.obs # position of obstacles
|
|
|
|
self.OPEN = [] # priority queue / OPEN set
|
|
self.CLOSED = [] # CLOSED set / VISITED order
|
|
self.PARENT = dict() # recorded parent
|
|
self.g = dict() # cost to come
|
|
|
|
def searching(self):
|
|
"""
|
|
A_star Searching.
|
|
:return: path, visited order
|
|
"""
|
|
|
|
self.PARENT[self.s_start] = self.s_start
|
|
self.g[self.s_start] = 0
|
|
self.g[self.s_goal] = math.inf
|
|
heapq.heappush(self.OPEN,
|
|
(self.f_value(self.s_start), self.s_start))
|
|
|
|
while self.OPEN:
|
|
_, s = heapq.heappop(self.OPEN)
|
|
self.CLOSED.append(s)
|
|
|
|
if s == self.s_goal: # stop condition
|
|
break
|
|
|
|
for s_n in self.get_neighbor(s):
|
|
new_cost = self.g[s] + self.cost(s, s_n)
|
|
|
|
if s_n not in self.g:
|
|
self.g[s_n] = math.inf
|
|
|
|
if new_cost < self.g[s_n]: # conditions for updating Cost
|
|
self.g[s_n] = new_cost
|
|
self.PARENT[s_n] = s
|
|
heapq.heappush(self.OPEN, (self.f_value(s_n), s_n))
|
|
|
|
return self.extract_path(self.PARENT), self.CLOSED
|
|
|
|
def searching_repeated_astar(self, e):
|
|
"""
|
|
repeated A*.
|
|
:param e: weight of A*
|
|
:return: path and visited order
|
|
"""
|
|
|
|
path, visited = [], []
|
|
|
|
while e >= 1:
|
|
p_k, v_k = self.repeated_searching(self.s_start, self.s_goal, e)
|
|
path.append(p_k)
|
|
visited.append(v_k)
|
|
e -= 0.5
|
|
|
|
return path, visited
|
|
|
|
def repeated_searching(self, s_start, s_goal, e):
|
|
"""
|
|
run A* with weight e.
|
|
:param s_start: starting state
|
|
:param s_goal: goal state
|
|
:param e: weight of a*
|
|
:return: path and visited order.
|
|
"""
|
|
|
|
g = {s_start: 0, s_goal: float("inf")}
|
|
PARENT = {s_start: s_start}
|
|
OPEN = []
|
|
CLOSED = []
|
|
heapq.heappush(OPEN,
|
|
(g[s_start] + e * self.heuristic(s_start), s_start))
|
|
|
|
while OPEN:
|
|
_, s = heapq.heappop(OPEN)
|
|
CLOSED.append(s)
|
|
|
|
if s == s_goal:
|
|
break
|
|
|
|
for s_n in self.get_neighbor(s):
|
|
new_cost = g[s] + self.cost(s, s_n)
|
|
|
|
if s_n not in g:
|
|
g[s_n] = math.inf
|
|
|
|
if new_cost < g[s_n]: # conditions for updating Cost
|
|
g[s_n] = new_cost
|
|
PARENT[s_n] = s
|
|
heapq.heappush(OPEN, (g[s_n] + e * self.heuristic(s_n), s_n))
|
|
|
|
return self.extract_path(PARENT), CLOSED
|
|
|
|
def get_neighbor(self, s):
|
|
"""
|
|
find neighbors of state s that not in obstacles.
|
|
:param s: state
|
|
:return: neighbors
|
|
"""
|
|
|
|
return [(s[0] + u[0], s[1] + u[1]) for u in self.u_set]
|
|
|
|
def cost(self, s_start, s_goal):
|
|
"""
|
|
Calculate Cost for this motion
|
|
:param s_start: starting node
|
|
:param s_goal: end node
|
|
:return: Cost for this motion
|
|
:note: Cost function could be more complicate!
|
|
"""
|
|
|
|
if self.is_collision(s_start, s_goal):
|
|
return math.inf
|
|
|
|
return math.hypot(s_goal[0] - s_start[0], s_goal[1] - s_start[1])
|
|
|
|
def is_collision(self, s_start, s_end):
|
|
"""
|
|
check if the line segment (s_start, s_end) is collision.
|
|
:param s_start: start node
|
|
:param s_end: end node
|
|
:return: True: is collision / False: not collision
|
|
"""
|
|
|
|
if s_start in self.obs or s_end in self.obs:
|
|
return True
|
|
|
|
if s_start[0] != s_end[0] and s_start[1] != s_end[1]:
|
|
if s_end[0] - s_start[0] == s_start[1] - s_end[1]:
|
|
s1 = (min(s_start[0], s_end[0]), min(s_start[1], s_end[1]))
|
|
s2 = (max(s_start[0], s_end[0]), max(s_start[1], s_end[1]))
|
|
else:
|
|
s1 = (min(s_start[0], s_end[0]), max(s_start[1], s_end[1]))
|
|
s2 = (max(s_start[0], s_end[0]), min(s_start[1], s_end[1]))
|
|
|
|
if s1 in self.obs or s2 in self.obs:
|
|
return True
|
|
|
|
return False
|
|
|
|
def f_value(self, s):
|
|
"""
|
|
f = g + h. (g: Cost to come, h: heuristic value)
|
|
:param s: current state
|
|
:return: f
|
|
"""
|
|
|
|
return self.g[s] + self.heuristic(s)
|
|
|
|
def extract_path(self, PARENT):
|
|
"""
|
|
Extract the path based on the PARENT set.
|
|
:return: The planning path
|
|
"""
|
|
|
|
path = [self.s_goal]
|
|
s = self.s_goal
|
|
|
|
while True:
|
|
s = PARENT[s]
|
|
path.append(s)
|
|
|
|
if s == self.s_start:
|
|
break
|
|
|
|
return list(path)
|
|
|
|
def heuristic(self, s):
|
|
"""
|
|
Calculate heuristic.
|
|
:param s: current node (state)
|
|
:return: heuristic function value
|
|
"""
|
|
|
|
heuristic_type = self.heuristic_type # heuristic type
|
|
goal = self.s_goal # goal node
|
|
|
|
if heuristic_type == "manhattan":
|
|
return abs(goal[0] - s[0]) + abs(goal[1] - s[1])
|
|
else:
|
|
return math.hypot(goal[0] - s[0], goal[1] - s[1])
|
|
|
|
|
|
def main():
|
|
s_start = (5, 5)
|
|
s_goal = (45, 25)
|
|
|
|
astar = AStar(s_start, s_goal, "euclidean")
|
|
plot = plotting.Plotting(s_start, s_goal)
|
|
|
|
path, visited = astar.searching()
|
|
plot.animation(path, visited, "A*") # animation
|
|
|
|
# path, visited = astar.searching_repeated_astar(2.5) # initial weight e = 2.5
|
|
# plot.animation_ara_star(path, visited, "Repeated A*")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|