You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

43 lines
1.1 KiB

import os
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.models import load_model
import numpy as np
# 模型路径
model_path = "./myModel/myModel.h5"
# 抑制tensorflow以防显存占用过多报错
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
# 读取手写数字数据集
num_mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = num_mnist.load_data()
# 读取训练好点模型
model = load_model(model_path)
# 打印网络结构
model.summary()
# 评估
model.evaluate(test_images.reshape(-1, 28, 28, 1), test_labels)
# 可视化预测效果
show_num = 300
testShow = test_labels[:show_num]
pred = model.predict(test_images.reshape(-1, 28, 28, 1))
predict = []
for item in pred:
predict.append(np.argmax(item))
plt.figure()
plt.title('Conv Predict')
plt.ylabel('number')
plt.plot(range(testShow.size), predict[:show_num], label='predict')
plt.plot(range(testShow.size), testShow, label='result')
plt.legend()
plt.show()