卷积神经网络

master
li.chengmeng 3 years ago
parent c9032d071f
commit b62ce1a612

@ -1,61 +1,36 @@
import os
import tensorflow as tf
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
from tensorflow import keras
import matplotlib.pyplot as plt
print(tf.version.VERSION)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
print(train_images.shape)
plt.imshow(train_images[0])
import tensorflow as tf
from tensorflow import keras
num_mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = num_mnist.load_data()
train_images = train_images[:1000]
train_labels = train_labels[:1000]
test_labels = test_labels[:1000]
train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0
# 定义一个简单的序列模型
def create_model():
model = tf.keras.models.Sequential([
keras.layers.Dense(512, activation='relu', input_shape=(784,)),
keras.layers.Dropout(0.2),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
# 创建一个基本的模型实例
model = create_model()
# 显示模型的结构
model.summary()
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
test_images = train_images[:1000]
test_labels = train_images[:1000]
# 创建一个保存模型权重的回调
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
save_weights_only=True,
verbose=1)
model = keras.Sequential()
model.add(keras.layers.Conv2D(8, (3,3), activation = 'relu', input_shape = (28,28,1)))
model.add(keras.layers.MaxPooling2D(2,2))
model.add(keras.layers.Conv2D(8, (3,3), activation = 'relu'))
model.add(keras.layers.MaxPooling2D(2,2))
# 使用新的回调训练模型
model.fit(train_images,
train_labels,
epochs=10,
batch_size=8,
validation_data=(test_images,test_labels),
callbacks=[cp_callback]) # 通过回调训练
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation = tf.nn.relu))
model.add(keras.layers.Dense(36, activation = tf.nn.softmax))
# 这可能会生成与保存优化程序状态相关的警告。
# 这些警告(以及整个笔记本中的类似警告)
# 是防止过时使用,可以忽略。
train_images_scaled = train_images/255
model.compile(optimizer = 'adam', loss = tf.losses.sparse_categorical_crossentropy, metrics = ['accuracy'])
results = model.evaluate(test_images, test_labels, verbose=2)
history = model.fit(train_images_scaled.reshape(-1, 28, 28 ,1), train_labels, epochs = 10, batch_size=8)
print(results)
#test_images_scaled = test_images/255
#results = model.evaluate(test_images_scaled.reshape(-1, 28, 28 ,1), test_labels)

Binary file not shown.
Loading…
Cancel
Save