You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

196 lines
8.3 KiB

12 months ago
#include "BasicBlock.h"
#include "Constant.h"
#include "Function.h"
#include "IRStmtBuilder.h"
#include "Module.h"
#include "Type.h"
#include <iostream>
#include <memory>
#ifdef DEBUG // 用于调试信息,大家可以在编译过程中通过" -DDEBUG"来开启这一选项
#define DEBUG_OUTPUT std::cout << __LINE__ << std::endl; // 输出行号的简单示例
#else
#define DEBUG_OUTPUT
#endif
#define CONST_INT(num) \
ConstantInt::create(num, module)
#define CONST_FP(num) \
ConstantFloat::create(num, module) // 得到常数值的表示,方便后面多次用到
using namespace SysYF::IR;
int main() {
auto module = Module::create("SysYF code"); // module name是什么无关紧要
auto builder = IRStmtBuilder::create(nullptr, module);
SysYF::Ptr<Type> Int32Type = Type::get_int32_type(module);
// 全局数组,num,x
auto arrayType_num = ArrayType::get(Int32Type, 2);
auto arrayType_x = ArrayType::get(Int32Type, 1);
auto zero_initializer = ConstantZero::create(Int32Type, module);
std::vector<SysYF::Ptr<Constant>> init_val;
init_val.push_back(CONST_INT(4));
init_val.push_back(CONST_INT(8));
auto num_initializer = ConstantArray::create(arrayType_num, init_val);
auto num = GlobalVariable::create("num", module, arrayType_num, false, num_initializer);// 是否是常量定义,初始化常量(ConstantZero类)
auto x = GlobalVariable::create("x", module, arrayType_x, false, zero_initializer);// 参数解释: 名字name所属module全局变量类型type
auto n = GlobalVariable::create("n", module, Int32Type, false, zero_initializer);
auto tmp = GlobalVariable::create("tmp", module, Int32Type, false, CONST_INT(1));
// climbStairs函数
// 函数参数类型的vector
std::vector<SysYF::Ptr<Type>> Ints(1, Int32Type);
//通过返回值类型与参数类型列表得到函数类型
auto climbStairsFunTy = FunctionType::create(Int32Type, Ints);
// 由函数类型得到函数
auto climbStairsFun = Function::create(climbStairsFunTy,
"climbStairs", module);
// BB的名字在生成中无所谓,但是可以方便阅读
auto bb = BasicBlock::create(module, "entry", climbStairsFun);
builder->set_insert_point(bb); // 一个BB的开始,将当前插入指令点的位置设在bb
auto retAlloca = builder->create_alloca(Int32Type); // 在内存中分配返回值的位置
auto nAlloca = builder->create_alloca(Int32Type); // 在内存中分配参数n的位置
std::vector<SysYF::Ptr<Value>> args; // 获取climbStairs函数的形参,通过Function中的iterator
for (auto arg = climbStairsFun->arg_begin(); arg != climbStairsFun->arg_end(); arg++) {
args.push_back(*arg); // * 号运算符是从迭代器中取出迭代器当前指向的元素
}
builder->create_store(args[0], nAlloca); // store参数n
auto retBB = BasicBlock::create(
module, "", climbStairsFun); // return分支,提前create,以便true分支可以br
auto nLoad = builder->create_load(nAlloca); // 将参数n load上来
auto icmp = builder->create_icmp_lt(nLoad, CONST_INT(4)); // n和4的比较,注意ICMPLT
auto trueBB = BasicBlock::create(module, "trueBB_if", climbStairsFun); // true分支
auto falseBB = BasicBlock::create(module, "falseBB_if", climbStairsFun); // false分支
builder->create_cond_br(icmp, trueBB, falseBB); // 条件BR
DEBUG_OUTPUT // 我调试的时候故意留下来的,以醒目地提醒你这个调试用的宏定义方法
builder->set_insert_point(trueBB); // if true; 分支的开始需要SetInsertPoint设置
nLoad = builder->create_load(nAlloca);
builder->create_store(nLoad, retAlloca);
builder->create_br(retBB); // br retBB
builder->set_insert_point(falseBB); // if false
auto arrayType_dp = ArrayType::get(Int32Type, 10);
auto dpAlloca = builder->create_alloca(arrayType_dp);
auto dp0Gep = builder->create_gep(dpAlloca, {CONST_INT(0), CONST_INT(0)});
builder->create_store(CONST_INT(0), dp0Gep);
auto dp1Gep = builder->create_gep(dpAlloca, {CONST_INT(0), CONST_INT(1)});
builder->create_store(CONST_INT(1), dp1Gep);
auto dp2Gep = builder->create_gep(dpAlloca, {CONST_INT(0), CONST_INT(2)});
builder->create_store(CONST_INT(2), dp2Gep);
auto iAlloca = builder->create_alloca(Int32Type);
builder->create_store(CONST_INT(3), iAlloca);
auto condBB = BasicBlock::create(module, "condBB_while", climbStairsFun); // 条件BB
trueBB = BasicBlock::create(module, "trueBB_while", climbStairsFun); // true分支
falseBB = BasicBlock::create(module, "falseBB_while", climbStairsFun); // false分支
builder->create_br(condBB);
builder->set_insert_point(condBB);
auto iLoad = builder->create_load(iAlloca);
nLoad = builder->create_load(nAlloca);
auto add = builder->create_iadd(nLoad, CONST_INT(1));
icmp = builder->create_icmp_lt(iLoad, add);
builder->create_cond_br(icmp, trueBB, falseBB);
builder->set_insert_point(trueBB);
iLoad = builder->create_load(iAlloca);
auto sub = builder->create_isub(iLoad, CONST_INT(1));
auto dpGep = builder->create_gep(dpAlloca, {CONST_INT(0), sub});
auto dp1Load = builder->create_load(dpGep);
iLoad = builder->create_load(iAlloca);
sub = builder->create_isub(iLoad, CONST_INT(2));
dpGep = builder->create_gep(dpAlloca, {CONST_INT(0), sub});
auto dp2Load = builder->create_load(dpGep);
add = builder->create_iadd(dp1Load, dp2Load);
iLoad = builder->create_load(iAlloca);
dpGep = builder->create_gep(dpAlloca, {CONST_INT(0), iLoad});
builder->create_store(add, dpGep);
iLoad = builder->create_load(iAlloca);
add = builder->create_iadd(iLoad, CONST_INT(1));
builder->create_store(add, iAlloca);
builder->create_br(condBB);
builder->set_insert_point(falseBB);
nLoad = builder->create_load(nAlloca);
dpGep = builder->create_gep(dpAlloca, {CONST_INT(0), nLoad});
auto dpLoad = builder->create_load(dpGep);
builder->create_store(dpLoad, retAlloca);
builder->create_br(retBB);
builder->set_insert_point(retBB); // ret分支
auto retLoad = builder->create_load(retAlloca);
builder->create_ret(retLoad);
// main函数
auto mainFun = Function::create(FunctionType::create(Int32Type, {}),
"main", module);
bb = BasicBlock::create(module, "entry", mainFun);
// BasicBlock的名字在生成中无所谓,但是可以方便阅读
builder->set_insert_point(bb);
retAlloca = builder->create_alloca(Int32Type);
auto resAlloca = builder->create_alloca(Int32Type);
auto num0Gep = builder->create_gep(num, {CONST_INT(0), CONST_INT(0)}); // GEP: 这里为什么是{0, 0}呢? (实验报告相关)
auto num0Load = builder->create_load(num0Gep);
builder->create_store(num0Load, n);
auto tmpLoad = builder->create_load(tmp);
auto numGep = builder->create_gep(num, {CONST_INT(0), tmpLoad});
auto numLoad = builder->create_load(numGep);
auto x0Gep = builder->create_gep(x, {CONST_INT(0), CONST_INT(0)});
builder->create_store(numLoad, x0Gep);
nLoad = builder->create_load(n);
tmpLoad = builder->create_load(tmp);
add = builder->create_iadd(nLoad, tmpLoad);
auto call = builder->create_call(climbStairsFun, {add}); // 为什么这里传的是{add}呢?
builder->create_store(call, resAlloca);
auto resLoad = builder->create_load(resAlloca);
x0Gep = builder->create_gep(x, {CONST_INT(0), CONST_INT(0)});
auto x0Load = builder->create_load(x0Gep);
sub = builder->create_isub(resLoad, x0Load);
builder->create_store(sub, retAlloca);
retLoad = builder->create_load(retAlloca);
builder->create_ret(retLoad);
// 给这么多注释了,但是可能你们还是会弄很多bug
// 所以强烈建议配置AutoComplete,效率会大大提高!
// 别人配了AutoComplete,只花1小时coding
// 你没有配AutoComplete,找method花5小时,debug花5小时,肯定哭唧唧!
// 最后,如果猜不到某个IR指令对应的C++的函数,建议把指令翻译成英语然后在method列表中搜索一下
// 最后的最后,这个例子只涉及到了一点基本的指令生成,
// 对于额外的指令,包括数组,在之后的实验中可能需要大家好好搜索一下思考一下,
// 还有涉及到的C++语法,可以在gitlab上发issue提问或者向大家提供指导
// 对于这个例子里的代码风格/用法,如果有好的建议也欢迎提出!
std::cout << module->print();
return 0;
}