You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
6.4 KiB
179 lines
6.4 KiB
3 years ago
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
// Copyright 2015 Google Inc. All rights reserved.
|
||
|
// http://ceres-solver.org/
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
// used to endorse or promote products derived from this software without
|
||
|
// specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
// Author: strandmark@google.com (Petter Strandmark)
|
||
|
|
||
|
#ifndef CERES_INTERNAL_CXSPARSE_H_
|
||
|
#define CERES_INTERNAL_CXSPARSE_H_
|
||
|
|
||
|
// This include must come before any #ifndef check on Ceres compile options.
|
||
|
#include "ceres/internal/port.h"
|
||
|
|
||
|
#ifndef CERES_NO_CXSPARSE
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "ceres/linear_solver.h"
|
||
|
#include "ceres/sparse_cholesky.h"
|
||
|
#include "cs.h"
|
||
|
|
||
|
namespace ceres {
|
||
|
namespace internal {
|
||
|
|
||
|
class CompressedRowSparseMatrix;
|
||
|
class TripletSparseMatrix;
|
||
|
|
||
|
// This object provides access to solving linear systems using Cholesky
|
||
|
// factorization with a known symbolic factorization. This features does not
|
||
|
// explicity exist in CXSparse. The methods in the class are nonstatic because
|
||
|
// the class manages internal scratch space.
|
||
|
class CXSparse {
|
||
|
public:
|
||
|
CXSparse();
|
||
|
~CXSparse();
|
||
|
|
||
|
// Solve the system lhs * solution = rhs in place by using an
|
||
|
// approximate minimum degree fill reducing ordering.
|
||
|
bool SolveCholesky(cs_di* lhs, double* rhs_and_solution);
|
||
|
|
||
|
// Solves a linear system given its symbolic and numeric factorization.
|
||
|
void Solve(cs_dis* symbolic_factor,
|
||
|
csn* numeric_factor,
|
||
|
double* rhs_and_solution);
|
||
|
|
||
|
// Compute the numeric Cholesky factorization of A, given its
|
||
|
// symbolic factorization.
|
||
|
//
|
||
|
// Caller owns the result.
|
||
|
csn* Cholesky(cs_di* A, cs_dis* symbolic_factor);
|
||
|
|
||
|
// Creates a sparse matrix from a compressed-column form. No memory is
|
||
|
// allocated or copied; the structure A is filled out with info from the
|
||
|
// argument.
|
||
|
cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
|
||
|
|
||
|
// Creates a new matrix from a triplet form. Deallocate the returned matrix
|
||
|
// with Free. May return NULL if the compression or allocation fails.
|
||
|
cs_di* CreateSparseMatrix(TripletSparseMatrix* A);
|
||
|
|
||
|
// B = A'
|
||
|
//
|
||
|
// The returned matrix should be deallocated with Free when not used
|
||
|
// anymore.
|
||
|
cs_di* TransposeMatrix(cs_di* A);
|
||
|
|
||
|
// C = A * B
|
||
|
//
|
||
|
// The returned matrix should be deallocated with Free when not used
|
||
|
// anymore.
|
||
|
cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B);
|
||
|
|
||
|
// Computes a symbolic factorization of A that can be used in SolveCholesky.
|
||
|
//
|
||
|
// The returned matrix should be deallocated with Free when not used anymore.
|
||
|
cs_dis* AnalyzeCholesky(cs_di* A);
|
||
|
|
||
|
// Computes a symbolic factorization of A that can be used in
|
||
|
// SolveCholesky, but does not compute a fill-reducing ordering.
|
||
|
//
|
||
|
// The returned matrix should be deallocated with Free when not used anymore.
|
||
|
cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A);
|
||
|
|
||
|
// Computes a symbolic factorization of A that can be used in
|
||
|
// SolveCholesky. The difference from AnalyzeCholesky is that this
|
||
|
// function first detects the block sparsity of the matrix using
|
||
|
// information about the row and column blocks and uses this block
|
||
|
// sparse matrix to find a fill-reducing ordering. This ordering is
|
||
|
// then used to find a symbolic factorization. This can result in a
|
||
|
// significant performance improvement AnalyzeCholesky on block
|
||
|
// sparse matrices.
|
||
|
//
|
||
|
// The returned matrix should be deallocated with Free when not used
|
||
|
// anymore.
|
||
|
cs_dis* BlockAnalyzeCholesky(cs_di* A,
|
||
|
const std::vector<int>& row_blocks,
|
||
|
const std::vector<int>& col_blocks);
|
||
|
|
||
|
// Compute an fill-reducing approximate minimum degree ordering of
|
||
|
// the matrix A. ordering should be non-NULL and should point to
|
||
|
// enough memory to hold the ordering for the rows of A.
|
||
|
void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering);
|
||
|
|
||
|
void Free(cs_di* sparse_matrix);
|
||
|
void Free(cs_dis* symbolic_factorization);
|
||
|
void Free(csn* numeric_factorization);
|
||
|
|
||
|
private:
|
||
|
// Cached scratch space
|
||
|
CS_ENTRY* scratch_;
|
||
|
int scratch_size_;
|
||
|
};
|
||
|
|
||
|
// An implementation of SparseCholesky interface using the CXSparse
|
||
|
// library.
|
||
|
class CXSparseCholesky : public SparseCholesky {
|
||
|
public:
|
||
|
// Factory
|
||
|
static CXSparseCholesky* Create(const OrderingType ordering_type);
|
||
|
|
||
|
// SparseCholesky interface.
|
||
|
virtual ~CXSparseCholesky();
|
||
|
virtual CompressedRowSparseMatrix::StorageType StorageType() const;
|
||
|
virtual LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
|
||
|
std::string* message);
|
||
|
virtual LinearSolverTerminationType Solve(const double* rhs,
|
||
|
double* solution,
|
||
|
std::string* message);
|
||
|
|
||
|
private:
|
||
|
CXSparseCholesky(const OrderingType ordering_type);
|
||
|
void FreeSymbolicFactorization();
|
||
|
void FreeNumericFactorization();
|
||
|
|
||
|
const OrderingType ordering_type_;
|
||
|
CXSparse cs_;
|
||
|
cs_dis* symbolic_factor_;
|
||
|
csn* numeric_factor_;
|
||
|
};
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace ceres
|
||
|
|
||
|
#else // CERES_NO_CXSPARSE
|
||
|
|
||
|
typedef void cs_dis;
|
||
|
|
||
|
class CXSparse {
|
||
|
public:
|
||
|
void Free(void* arg) {}
|
||
|
};
|
||
|
#endif // CERES_NO_CXSPARSE
|
||
|
|
||
|
#endif // CERES_INTERNAL_CXSPARSE_H_
|