You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/myTelloProject-master/AlphaPose/doc/CrowdPose.md

65 lines
2.6 KiB

3 years ago
## [CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark](https://arxiv.org/abs/1812.00324) *(accepted to CVPR2019)*
<p align='center'>
<img src="crowdpose.gif", width="360">
</p>
## Introduction
Our proposed method surpasses the state-of-the-art methods on [CrowdPose](https://arxiv.org/abs/1812.00324) dataset by **5** mAP and results on MSCOCO dataset demonstrate the generalization ability of our method (comparatively **0.8** mAP higher). Images in our proposed CrowdPose dataset have a uniform distribution of *Crowd Index* among \[0, 1\].
## Code
We provide [evaluation tools](https://github.com/Jeff-sjtu/CrowdPose) for CrowdPose dataset. Our evaluation tools is developed based on [@cocodataset/cocoapi](https://github.com/cocodataset/cocoapi). The source code of our model is integrated into [AlphaPose](https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch).
## Quick Start
Run with `matching` option to use the matching algorithm in CrowdPose.
- **Input dir**: Run AlphaPose for all images in a folder with:
```
python3 demo.py --indir ${img_directory} --outdir examples/res --matching
```
## Dataset
[Train + Validation + Test Images](https://drive.google.com/file/d/1VprytECcLtU4tKP32SYi_7oDRbw7yUTL/view?usp=sharing) (Google Drive)
[Annotations](https://drive.google.com/open?id=196vsma1uuLLCcUt1NrXp1K8PBU6tVH8w) (Google Drive)
## Results
**Results on CrowdPose Validation:**
*Compare with state-of-the-art methods*
<center>
| Method | AP @0.5:0.95 | AP @0.5 | AP @0.75 | AR @0.5:0.95 | AR @0.5 | AR @0.75 |
|:-------|:-----:|:-------:|:-------:|:-------:|:-------:|:-------:|
| Detectron (Mask R-CNN) | 57.2 | 83.5 | 60.3 | 65.9 | 89.3 | 69.4 |
| Simple Pose (Xiao *et al.*) | 60.8 | 81.4 | 65.7 | 67.3 | 86.3 | 71.8 |
| **Ours** | **66.0** | **84.2** | **71.5** | **72.7** | **89.5** | **77.5** |
</center>
*Compare with open-source systems*
<center>
| Method | AP @*Easy* | AP @*Medium* | AP @*Hard* | FPS |
|:-------|:-----:|:-------:|:-------:|:-------:|
| OpenPose (CMU-Pose) | 62.7 | 48.7 | 32.3 | 5.3 |
| Detectron (Mask R-CNN) | 69.4 | 57.9 | 45.8 | 2.9 |
| **Ours** | **75.5** | **66.3** | **57.4** | **10.1** |
</center>
**Results on MSCOCO Validation:**
<center>
| Method | AP @0.5:0.95 | AR @0.5:0.95 |
|:-------|:-----:|:-------:|
| Detectron (Mask R-CNN) | 64.8 | 71.1 |
| Simple Pose (Xiao *et al.*) | 69.8 | 74.1 |
| **AlphaPose** | **70.9** | **76.4** |
</center>
## Contributors
CrowdPose is authored by [Jiefeng Li](http://jeff-leaf.site/), [Can Wang](https://github.com/Canwang-sjtu), [Hao Zhu](https://github.com/BernieZhu), [Yihuan Mao](), [Hao-Shu Fang](https://fang-haoshu.github.io/), and [Cewu Lu](http://www.mvig.org/).