You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/colmap-dev/lib/FLANN/algorithms/kdtree_single_index.h

699 lines
21 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_KDTREE_SINGLE_INDEX_H_
#define FLANN_KDTREE_SINGLE_INDEX_H_
#include <algorithm>
#include <map>
#include <cassert>
#include <cstring>
#include "FLANN/general.h"
#include "FLANN/algorithms/nn_index.h"
#include "FLANN/util/matrix.h"
#include "FLANN/util/result_set.h"
#include "FLANN/util/heap.h"
#include "FLANN/util/allocator.h"
#include "FLANN/util/random.h"
#include "FLANN/util/saving.h"
namespace flann
{
struct KDTreeSingleIndexParams : public IndexParams
{
KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true)
{
(*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
(*this)["leaf_max_size"] = leaf_max_size;
(*this)["reorder"] = reorder;
}
};
/**
* Single kd-tree index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*/
template <typename Distance>
class KDTreeSingleIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
typedef NNIndex<Distance> BaseClass;
typedef bool needs_kdtree_distance;
/**
* KDTree constructor
*
* Params:
* params = parameters passed to the kdtree algorithm
*/
KDTreeSingleIndex(const IndexParams& params = KDTreeSingleIndexParams(), Distance d = Distance() ) :
BaseClass(params, d), root_node_(NULL)
{
leaf_max_size_ = get_param(params,"leaf_max_size",10);
reorder_ = get_param(params, "reorder", true);
}
/**
* KDTree constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the kdtree algorithm
*/
KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
Distance d = Distance() ) : BaseClass(params, d), root_node_(NULL)
{
leaf_max_size_ = get_param(params,"leaf_max_size",10);
reorder_ = get_param(params, "reorder", true);
setDataset(inputData);
}
KDTreeSingleIndex(const KDTreeSingleIndex& other) : BaseClass(other),
leaf_max_size_(other.leaf_max_size_),
reorder_(other.reorder_),
vind_(other.vind_),
root_bbox_(other.root_bbox_)
{
if (reorder_) {
data_ = flann::Matrix<ElementType>(new ElementType[size_*veclen_], size_, veclen_);
std::copy(other.data_[0], other.data_[0]+size_*veclen_, data_[0]);
}
copyTree(root_node_, other.root_node_);
}
KDTreeSingleIndex& operator=(KDTreeSingleIndex other)
{
this->swap(other);
return *this;
}
/**
* Standard destructor
*/
virtual ~KDTreeSingleIndex()
{
freeIndex();
}
BaseClass* clone() const
{
return new KDTreeSingleIndex(*this);
}
using BaseClass::buildIndex;
void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
{
assert(points.cols==veclen_);
extendDataset(points);
buildIndex();
}
flann_algorithm_t getType() const
{
return FLANN_INDEX_KDTREE_SINGLE;
}
template<typename Archive>
void serialize(Archive& ar)
{
ar.setObject(this);
if (reorder_) index_params_["save_dataset"] = false;
ar & *static_cast<NNIndex<Distance>*>(this);
ar & reorder_;
ar & leaf_max_size_;
ar & root_bbox_;
ar & vind_;
if (reorder_) {
ar & data_;
}
if (Archive::is_loading::value) {
root_node_ = new(pool_) Node();
}
ar & *root_node_;
if (Archive::is_loading::value) {
index_params_["algorithm"] = getType();
index_params_["leaf_max_size"] = leaf_max_size_;
index_params_["reorder"] = reorder_;
}
}
void saveIndex(FILE* stream)
{
serialization::SaveArchive sa(stream);
sa & *this;
}
void loadIndex(FILE* stream)
{
freeIndex();
serialization::LoadArchive la(stream);
la & *this;
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
int usedMemory() const
{
return pool_.usedMemory+pool_.wastedMemory+size_*sizeof(int); // pool memory and vind array memory
}
/**
* Find set of nearest neighbors to vec. Their indices are stored inside
* the result object.
*
* Params:
* result = the result object in which the indices of the nearest-neighbors are stored
* vec = the vector for which to search the nearest neighbors
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const
{
float epsError = 1+searchParams.eps;
std::vector<DistanceType> dists(veclen_,0);
DistanceType distsq = computeInitialDistances(vec, dists);
if (removed_) {
searchLevel<true>(result, vec, root_node_, distsq, dists, epsError);
}
else {
searchLevel<false>(result, vec, root_node_, distsq, dists, epsError);
}
}
protected:
/**
* Builds the index
*/
void buildIndexImpl()
{
// Create a permutable array of indices to the input vectors.
vind_.resize(size_);
for (size_t i = 0; i < size_; i++) {
vind_[i] = i;
}
computeBoundingBox(root_bbox_);
root_node_ = divideTree(0, size_, root_bbox_ ); // construct the tree
if (reorder_) {
data_ = flann::Matrix<ElementType>(new ElementType[size_*veclen_], size_, veclen_);
for (size_t i=0; i<size_; ++i) {
std::copy(points_[vind_[i]], points_[vind_[i]]+veclen_, data_[i]);
}
}
}
private:
/*--------------------- Internal Data Structures --------------------------*/
struct Node
{
/**
* Indices of points in leaf node
*/
int left, right;
/**
* Dimension used for subdivision.
*/
int divfeat;
/**
* The values used for subdivision.
*/
DistanceType divlow, divhigh;
/**
* The child nodes.
*/
Node* child1, * child2;
~Node()
{
if (child1) child1->~Node();
if (child2) child2->~Node();
}
private:
template<typename Archive>
void serialize(Archive& ar)
{
typedef KDTreeSingleIndex<Distance> Index;
Index* obj = static_cast<Index*>(ar.getObject());
ar & left;
ar & right;
ar & divfeat;
ar & divlow;
ar & divhigh;
bool leaf_node = false;
if (Archive::is_saving::value) {
leaf_node = ((child1==NULL) && (child2==NULL));
}
ar & leaf_node;
if (!leaf_node) {
if (Archive::is_loading::value) {
child1 = new(obj->pool_) Node();
child2 = new(obj->pool_) Node();
}
ar & *child1;
ar & *child2;
}
}
friend struct serialization::access;
};
typedef Node* NodePtr;
struct Interval
{
DistanceType low, high;
private:
template <typename Archive>
void serialize(Archive& ar)
{
ar & low;
ar & high;
}
friend struct serialization::access;
};
typedef std::vector<Interval> BoundingBox;
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
typedef BranchSt* Branch;
void freeIndex()
{
if (data_.ptr()) {
delete[] data_.ptr();
data_ = flann::Matrix<ElementType>();
}
if (root_node_) root_node_->~Node();
pool_.free();
}
void copyTree(NodePtr& dst, const NodePtr& src)
{
dst = new(pool_) Node();
*dst = *src;
if (src->child1!=NULL && src->child2!=NULL) {
copyTree(dst->child1, src->child1);
copyTree(dst->child2, src->child2);
}
}
void computeBoundingBox(BoundingBox& bbox)
{
bbox.resize(veclen_);
for (size_t i=0; i<veclen_; ++i) {
bbox[i].low = (DistanceType)points_[0][i];
bbox[i].high = (DistanceType)points_[0][i];
}
for (size_t k=1; k<size_; ++k) {
for (size_t i=0; i<veclen_; ++i) {
if (points_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)points_[k][i];
if (points_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)points_[k][i];
}
}
}
/**
* Create a tree node that subdivides the list of vecs from vind[first]
* to vind[last]. The routine is called recursively on each sublist.
* Place a pointer to this new tree node in the location pTree.
*
* Params: pTree = the new node to create
* first = index of the first vector
* last = index of the last vector
*/
NodePtr divideTree(int left, int right, BoundingBox& bbox)
{
NodePtr node = new (pool_) Node(); // allocate memory
/* If too few exemplars remain, then make this a leaf node. */
if ( (right-left) <= leaf_max_size_) {
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
node->left = left;
node->right = right;
// compute bounding-box of leaf points
for (size_t i=0; i<veclen_; ++i) {
bbox[i].low = (DistanceType)points_[vind_[left]][i];
bbox[i].high = (DistanceType)points_[vind_[left]][i];
}
for (int k=left+1; k<right; ++k) {
for (size_t i=0; i<veclen_; ++i) {
if (bbox[i].low>points_[vind_[k]][i]) bbox[i].low=(DistanceType)points_[vind_[k]][i];
if (bbox[i].high<points_[vind_[k]][i]) bbox[i].high=(DistanceType)points_[vind_[k]][i];
}
}
}
else {
int idx;
int cutfeat;
DistanceType cutval;
middleSplit(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
node->divfeat = cutfeat;
BoundingBox left_bbox(bbox);
left_bbox[cutfeat].high = cutval;
node->child1 = divideTree(left, left+idx, left_bbox);
BoundingBox right_bbox(bbox);
right_bbox[cutfeat].low = cutval;
node->child2 = divideTree(left+idx, right, right_bbox);
node->divlow = left_bbox[cutfeat].high;
node->divhigh = right_bbox[cutfeat].low;
for (size_t i=0; i<veclen_; ++i) {
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
}
}
return node;
}
void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
{
min_elem = points_[ind[0]][dim];
max_elem = points_[ind[0]][dim];
for (int i=1; i<count; ++i) {
ElementType val = points_[ind[i]][dim];
if (val<min_elem) min_elem = val;
if (val>max_elem) max_elem = val;
}
}
void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
// find the largest span from the approximate bounding box
ElementType max_span = bbox[0].high-bbox[0].low;
cutfeat = 0;
cutval = (bbox[0].high+bbox[0].low)/2;
for (size_t i=1; i<veclen_; ++i) {
ElementType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
max_span = span;
cutfeat = i;
cutval = (bbox[i].high+bbox[i].low)/2;
}
}
// compute exact span on the found dimension
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
cutval = (min_elem+max_elem)/2;
max_span = max_elem - min_elem;
// check if a dimension of a largest span exists
size_t k = cutfeat;
for (size_t i=0; i<veclen_; ++i) {
if (i==k) continue;
ElementType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
computeMinMax(ind, count, i, min_elem, max_elem);
span = max_elem - min_elem;
if (span>max_span) {
max_span = span;
cutfeat = i;
cutval = (min_elem+max_elem)/2;
}
}
}
int lim1, lim2;
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
if (lim1>count/2) index = lim1;
else if (lim2<count/2) index = lim2;
else index = count/2;
assert(index > 0 && index < count);
}
void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
const float eps_val=0.00001f;
DistanceType max_span = bbox[0].high-bbox[0].low;
for (size_t i=1; i<veclen_; ++i) {
DistanceType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
max_span = span;
}
}
DistanceType max_spread = -1;
cutfeat = 0;
for (size_t i=0; i<veclen_; ++i) {
DistanceType span = bbox[i].high-bbox[i].low;
if (span>(DistanceType)((1-eps_val)*max_span)) {
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
DistanceType spread = (DistanceType)(max_elem-min_elem);
if (spread>max_spread) {
cutfeat = i;
max_spread = spread;
}
}
}
// split in the middle
DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
if (split_val<min_elem) cutval = (DistanceType)min_elem;
else if (split_val>max_elem) cutval = (DistanceType)max_elem;
else cutval = split_val;
int lim1, lim2;
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
if (lim1>count/2) index = lim1;
else if (lim2<count/2) index = lim2;
else index = count/2;
assert(index > 0 && index < count);
}
/**
* Subdivide the list of points by a plane perpendicular on axe corresponding
* to the 'cutfeat' dimension at 'cutval' position.
*
* On return:
* dataset[ind[0..lim1-1]][cutfeat]<cutval
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
* dataset[ind[lim2..count]][cutfeat]>cutval
*/
void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
{
int left = 0;
int right = count-1;
for (;; ) {
while (left<=right && points_[ind[left]][cutfeat]<cutval) ++left;
while (left<=right && points_[ind[right]][cutfeat]>=cutval) --right;
if (left>right) break;
std::swap(ind[left], ind[right]); ++left; --right;
}
lim1 = left;
right = count-1;
for (;; ) {
while (left<=right && points_[ind[left]][cutfeat]<=cutval) ++left;
while (left<=right && points_[ind[right]][cutfeat]>cutval) --right;
if (left>right) break;
std::swap(ind[left], ind[right]); ++left; --right;
}
lim2 = left;
}
DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists) const
{
DistanceType distsq = 0.0;
for (size_t i = 0; i < veclen_; ++i) {
if (vec[i] < root_bbox_[i].low) {
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, i);
distsq += dists[i];
}
if (vec[i] > root_bbox_[i].high) {
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, i);
distsq += dists[i];
}
}
return distsq;
}
/**
* Performs an exact search in the tree starting from a node.
*/
template <bool with_removed>
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
std::vector<DistanceType>& dists, const float epsError) const
{
/* If this is a leaf node, then do check and return. */
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
DistanceType worst_dist = result_set.worstDist();
for (int i=node->left; i<node->right; ++i) {
if (with_removed) {
if (removed_points_.test(vind_[i])) continue;
}
ElementType* point = reorder_ ? data_[i] : points_[vind_[i]];
DistanceType dist = distance_(vec, point, veclen_, worst_dist);
if (dist<worst_dist) {
result_set.addPoint(dist,vind_[i]);
}
}
return;
}
/* Which child branch should be taken first? */
int idx = node->divfeat;
ElementType val = vec[idx];
DistanceType diff1 = val - node->divlow;
DistanceType diff2 = val - node->divhigh;
NodePtr bestChild;
NodePtr otherChild;
DistanceType cut_dist;
if ((diff1+diff2)<0) {
bestChild = node->child1;
otherChild = node->child2;
cut_dist = distance_.accum_dist(val, node->divhigh, idx);
}
else {
bestChild = node->child2;
otherChild = node->child1;
cut_dist = distance_.accum_dist( val, node->divlow, idx);
}
/* Call recursively to search next level down. */
searchLevel<with_removed>(result_set, vec, bestChild, mindistsq, dists, epsError);
DistanceType dst = dists[idx];
mindistsq = mindistsq + cut_dist - dst;
dists[idx] = cut_dist;
if (mindistsq*epsError<=result_set.worstDist()) {
searchLevel<with_removed>(result_set, vec, otherChild, mindistsq, dists, epsError);
}
dists[idx] = dst;
}
void swap(KDTreeSingleIndex& other)
{
BaseClass::swap(other);
std::swap(leaf_max_size_, other.leaf_max_size_);
std::swap(reorder_, other.reorder_);
std::swap(vind_, other.vind_);
std::swap(data_, other.data_);
std::swap(root_node_, other.root_node_);
std::swap(root_bbox_, other.root_bbox_);
std::swap(pool_, other.pool_);
}
private:
int leaf_max_size_;
bool reorder_;
/**
* Array of indices to vectors in the dataset.
*/
std::vector<int> vind_;
Matrix<ElementType> data_;
/**
* Array of k-d trees used to find neighbours.
*/
NodePtr root_node_;
/**
* Root bounding box
*/
BoundingBox root_bbox_;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool_;
USING_BASECLASS_SYMBOLS
}; // class KDTreeSingleIndex
}
#endif //FLANN_KDTREE_SINGLE_INDEX_H_