You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/colmap-build/ceres-solver-1.14.0/internal/ceres/jet_test.cc

849 lines
22 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#include "ceres/jet.h"
#include <algorithm>
#include <cmath>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "ceres/fpclassify.h"
#include "ceres/stringprintf.h"
#include "ceres/test_util.h"
#define VL VLOG(1)
namespace ceres {
namespace internal {
const double kE = 2.71828182845904523536;
typedef Jet<double, 2> J;
// Convenient shorthand for making a jet.
J MakeJet(double a, double v0, double v1) {
J z;
z.a = a;
z.v[0] = v0;
z.v[1] = v1;
return z;
}
// On a 32-bit optimized build, the mismatch is about 1.4e-14.
double const kTolerance = 1e-13;
void ExpectJetsClose(const J &x, const J &y) {
ExpectClose(x.a, y.a, kTolerance);
ExpectClose(x.v[0], y.v[0], kTolerance);
ExpectClose(x.v[1], y.v[1], kTolerance);
}
const double kStep = 1e-8;
const double kNumericalTolerance = 1e-6; // Numeric derivation is quite inexact
// Differentiate using Jet and confirm results with numerical derivation.
template<typename Function>
void NumericalTest(const char* name, const Function& f, const double x) {
const double exact_dx = f(MakeJet(x, 1.0, 0.0)).v[0];
const double estimated_dx =
(f(J(x + kStep)).a - f(J(x - kStep)).a) / (2.0 * kStep);
VL << name << "(" << x << "), exact dx: "
<< exact_dx << ", estimated dx: " << estimated_dx;
ExpectClose(exact_dx, estimated_dx, kNumericalTolerance);
}
// Same as NumericalTest, but given a function taking two arguments.
template<typename Function>
void NumericalTest2(const char* name, const Function& f,
const double x, const double y) {
const J exact_delta = f(MakeJet(x, 1.0, 0.0), MakeJet(y, 0.0, 1.0));
const double exact_dx = exact_delta.v[0];
const double exact_dy = exact_delta.v[1];
// Sanity check these should be equivalent:
EXPECT_EQ(exact_dx, f(MakeJet(x, 1.0, 0.0), MakeJet(y, 0.0, 0.0)).v[0]);
EXPECT_EQ(exact_dx, f(MakeJet(x, 0.0, 1.0), MakeJet(y, 0.0, 0.0)).v[1]);
EXPECT_EQ(exact_dy, f(MakeJet(x, 0.0, 0.0), MakeJet(y, 1.0, 0.0)).v[0]);
EXPECT_EQ(exact_dy, f(MakeJet(x, 0.0, 0.0), MakeJet(y, 0.0, 1.0)).v[1]);
const double estimated_dx =
(f(J(x + kStep), J(y)).a - f(J(x - kStep), J(y)).a) / (2.0 * kStep);
const double estimated_dy =
(f(J(x), J(y + kStep)).a - f(J(x), J(y - kStep)).a) / (2.0 * kStep);
VL << name << "(" << x << ", " << y << "), exact dx: "
<< exact_dx << ", estimated dx: " << estimated_dx;
ExpectClose(exact_dx, estimated_dx, kNumericalTolerance);
VL << name << "(" << x << ", " << y << "), exact dy: "
<< exact_dy << ", estimated dy: " << estimated_dy;
ExpectClose(exact_dy, estimated_dy, kNumericalTolerance);
}
TEST(Jet, Jet) {
// Pick arbitrary values for x and y.
J x = MakeJet(2.3, -2.7, 1e-3);
J y = MakeJet(1.7, 0.5, 1e+2);
VL << "x = " << x;
VL << "y = " << y;
{ // Check that log(exp(x)) == x.
J z = exp(x);
J w = log(z);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, x);
}
{ // Check that (x * y) / x == y.
J z = x * y;
J w = z / x;
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, y);
}
{ // Check that sqrt(x * x) == x.
J z = x * x;
J w = sqrt(z);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, x);
}
{ // Check that sqrt(y) * sqrt(y) == y.
J z = sqrt(y);
J w = z * z;
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, y);
}
NumericalTest("sqrt", sqrt<double, 2>, 0.00001);
NumericalTest("sqrt", sqrt<double, 2>, 1.0);
{ // Check that cos(2*x) = cos(x)^2 - sin(x)^2
J z = cos(J(2.0) * x);
J w = cos(x)*cos(x) - sin(x)*sin(x);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, z);
}
{ // Check that sin(2*x) = 2*cos(x)*sin(x)
J z = sin(J(2.0) * x);
J w = J(2.0)*cos(x)*sin(x);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, z);
}
{ // Check that cos(x)*cos(x) + sin(x)*sin(x) = 1
J z = cos(x) * cos(x);
J w = sin(x) * sin(x);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z + w, J(1.0));
}
{ // Check that atan2(r*sin(t), r*cos(t)) = t.
J t = MakeJet(0.7, -0.3, +1.5);
J r = MakeJet(2.3, 0.13, -2.4);
VL << "t = " << t;
VL << "r = " << r;
J u = atan2(r * sin(t), r * cos(t));
VL << "u = " << u;
ExpectJetsClose(u, t);
}
{ // Check that tan(x) = sin(x) / cos(x).
J z = tan(x);
J w = sin(x) / cos(x);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z, w);
}
{ // Check that tan(atan(x)) = x.
J z = tan(atan(x));
J w = x;
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z, w);
}
{ // Check that cosh(x)*cosh(x) - sinh(x)*sinh(x) = 1
J z = cosh(x) * cosh(x);
J w = sinh(x) * sinh(x);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z - w, J(1.0));
}
{ // Check that tanh(x + y) = (tanh(x) + tanh(y)) / (1 + tanh(x) tanh(y))
J z = tanh(x + y);
J w = (tanh(x) + tanh(y)) / (J(1.0) + tanh(x) * tanh(y));
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z, w);
}
{ // Check that pow(x, 1) == x.
VL << "x = " << x;
J u = pow(x, 1.);
VL << "u = " << u;
ExpectJetsClose(x, u);
}
{ // Check that pow(x, 1) == x.
J y = MakeJet(1, 0.0, 0.0);
VL << "x = " << x;
VL << "y = " << y;
J u = pow(x, y);
VL << "u = " << u;
ExpectJetsClose(x, u);
}
{ // Check that pow(e, log(x)) == x.
J logx = log(x);
VL << "x = " << x;
VL << "y = " << y;
J u = pow(kE, logx);
VL << "u = " << u;
ExpectJetsClose(x, u);
}
{ // Check that pow(e, log(x)) == x.
J logx = log(x);
J e = MakeJet(kE, 0., 0.);
VL << "x = " << x;
VL << "log(x) = " << logx;
J u = pow(e, logx);
VL << "u = " << u;
ExpectJetsClose(x, u);
}
{ // Check that pow(e, log(x)) == x.
J logx = log(x);
J e = MakeJet(kE, 0., 0.);
VL << "x = " << x;
VL << "logx = " << logx;
J u = pow(e, logx);
VL << "u = " << u;
ExpectJetsClose(x, u);
}
{ // Check that pow(x,y) = exp(y*log(x)).
J logx = log(x);
J e = MakeJet(kE, 0., 0.);
VL << "x = " << x;
VL << "logx = " << logx;
J u = pow(e, y*logx);
J v = pow(x, y);
VL << "u = " << u;
VL << "v = " << v;
ExpectJetsClose(v, u);
}
{ // Check that pow(0, y) == 0 for y > 1, with both arguments Jets.
// This tests special case handling inside pow().
J a = MakeJet(0, 1, 2);
J b = MakeJet(2, 3, 4);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
ExpectJetsClose(c, MakeJet(0, 0, 0));
}
{ // Check that pow(0, y) == 0 for y == 1, with both arguments Jets.
// This tests special case handling inside pow().
J a = MakeJet(0, 1, 2);
J b = MakeJet(1, 3, 4);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
ExpectJetsClose(c, MakeJet(0, 1, 2));
}
{ // Check that pow(0, <1) is not finite, with both arguments Jets.
for (int i = 1; i < 10; i++) {
J a = MakeJet(0, 1, 2);
J b = MakeJet(i*0.1, 3, 4); // b = 0.1 ... 0.9
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
EXPECT_EQ(c.a, 0.0);
EXPECT_FALSE(IsFinite(c.v[0]));
EXPECT_FALSE(IsFinite(c.v[1]));
}
for (int i = -10; i < 0; i++) {
J a = MakeJet(0, 1, 2);
J b = MakeJet(i*0.1, 3, 4); // b = -1,-0.9 ... -0.1
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
EXPECT_FALSE(IsFinite(c.a));
EXPECT_FALSE(IsFinite(c.v[0]));
EXPECT_FALSE(IsFinite(c.v[1]));
}
{
// The special case of 0^0 = 1 defined by the C standard.
J a = MakeJet(0, 1, 2);
J b = MakeJet(0, 3, 4);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
EXPECT_EQ(c.a, 1.0);
EXPECT_FALSE(IsFinite(c.v[0]));
EXPECT_FALSE(IsFinite(c.v[1]));
}
}
{ // Check that pow(<0, b) is correct for integer b.
// This tests special case handling inside pow().
J a = MakeJet(-1.5, 3, 4);
// b integer:
for (int i = -10; i <= 10; i++) {
J b = MakeJet(i, 0, 5);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
ExpectClose(c.a, pow(-1.5, i), kTolerance);
EXPECT_TRUE(IsFinite(c.v[0]));
EXPECT_FALSE(IsFinite(c.v[1]));
ExpectClose(c.v[0], i * pow(-1.5, i - 1) * 3.0, kTolerance);
}
}
{ // Check that pow(<0, b) is correct for noninteger b.
// This tests special case handling inside pow().
J a = MakeJet(-1.5, 3, 4);
J b = MakeJet(-2.5, 0, 5);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
EXPECT_FALSE(IsFinite(c.a));
EXPECT_FALSE(IsFinite(c.v[0]));
EXPECT_FALSE(IsFinite(c.v[1]));
}
{
// Check that pow(0,y) == 0 for y == 2, with the second argument a
// Jet. This tests special case handling inside pow().
double a = 0;
J b = MakeJet(2, 3, 4);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
ExpectJetsClose(c, MakeJet(0, 0, 0));
}
{
// Check that pow(<0,y) is correct for integer y. This tests special case
// handling inside pow().
double a = -1.5;
for (int i = -10; i <= 10; i++) {
J b = MakeJet(i, 3, 0);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
ExpectClose(c.a, pow(-1.5, i), kTolerance);
EXPECT_FALSE(IsFinite(c.v[0]));
EXPECT_TRUE(IsFinite(c.v[1]));
ExpectClose(c.v[1], 0, kTolerance);
}
}
{
// Check that pow(<0,y) is correct for noninteger y. This tests special
// case handling inside pow().
double a = -1.5;
J b = MakeJet(-3.14, 3, 0);
VL << "a = " << a;
VL << "b = " << b;
J c = pow(a, b);
VL << "a^b = " << c;
EXPECT_FALSE(IsFinite(c.a));
EXPECT_FALSE(IsFinite(c.v[0]));
EXPECT_FALSE(IsFinite(c.v[1]));
}
{ // Check that 1 + x == x + 1.
J a = x + 1.0;
J b = 1.0 + x;
J c = x;
c += 1.0;
ExpectJetsClose(a, b);
ExpectJetsClose(a, c);
}
{ // Check that 1 - x == -(x - 1).
J a = 1.0 - x;
J b = -(x - 1.0);
J c = x;
c -= 1.0;
ExpectJetsClose(a, b);
ExpectJetsClose(a, -c);
}
{ // Check that (x/s)*s == (x*s)/s.
J a = x / 5.0;
J b = x * 5.0;
J c = x;
c /= 5.0;
J d = x;
d *= 5.0;
ExpectJetsClose(5.0 * a, b / 5.0);
ExpectJetsClose(a, c);
ExpectJetsClose(b, d);
}
{ // Check that x / y == 1 / (y / x).
J a = x / y;
J b = 1.0 / (y / x);
VL << "a = " << a;
VL << "b = " << b;
ExpectJetsClose(a, b);
}
{ // Check that abs(-x * x) == sqrt(x * x).
ExpectJetsClose(abs(-x), sqrt(x * x));
}
{ // Check that cos(acos(x)) == x.
J a = MakeJet(0.1, -2.7, 1e-3);
ExpectJetsClose(cos(acos(a)), a);
ExpectJetsClose(acos(cos(a)), a);
J b = MakeJet(0.6, 0.5, 1e+2);
ExpectJetsClose(cos(acos(b)), b);
ExpectJetsClose(acos(cos(b)), b);
}
{ // Check that sin(asin(x)) == x.
J a = MakeJet(0.1, -2.7, 1e-3);
ExpectJetsClose(sin(asin(a)), a);
ExpectJetsClose(asin(sin(a)), a);
J b = MakeJet(0.4, 0.5, 1e+2);
ExpectJetsClose(sin(asin(b)), b);
ExpectJetsClose(asin(sin(b)), b);
}
{
J zero = J(0.0);
// Check that J0(0) == 1.
ExpectJetsClose(BesselJ0(zero), J(1.0));
// Check that J1(0) == 0.
ExpectJetsClose(BesselJ1(zero), zero);
// Check that J2(0) == 0.
ExpectJetsClose(BesselJn(2, zero), zero);
// Check that J3(0) == 0.
ExpectJetsClose(BesselJn(3, zero), zero);
J z = MakeJet(0.1, -2.7, 1e-3);
// Check that J0(z) == Jn(0,z).
ExpectJetsClose(BesselJ0(z), BesselJn(0, z));
// Check that J1(z) == Jn(1,z).
ExpectJetsClose(BesselJ1(z), BesselJn(1, z));
// Check that J0(z)+J2(z) == (2/z)*J1(z).
// See formula http://dlmf.nist.gov/10.6.E1
ExpectJetsClose(BesselJ0(z) + BesselJn(2, z), (2.0 / z) * BesselJ1(z));
}
{ // Check that floor of a positive number works.
J a = MakeJet(0.1, -2.7, 1e-3);
J b = floor(a);
J expected = MakeJet(floor(a.a), 0.0, 0.0);
EXPECT_EQ(expected, b);
}
{ // Check that floor of a negative number works.
J a = MakeJet(-1.1, -2.7, 1e-3);
J b = floor(a);
J expected = MakeJet(floor(a.a), 0.0, 0.0);
EXPECT_EQ(expected, b);
}
{ // Check that floor of a positive number works.
J a = MakeJet(10.123, -2.7, 1e-3);
J b = floor(a);
J expected = MakeJet(floor(a.a), 0.0, 0.0);
EXPECT_EQ(expected, b);
}
{ // Check that ceil of a positive number works.
J a = MakeJet(0.1, -2.7, 1e-3);
J b = ceil(a);
J expected = MakeJet(ceil(a.a), 0.0, 0.0);
EXPECT_EQ(expected, b);
}
{ // Check that ceil of a negative number works.
J a = MakeJet(-1.1, -2.7, 1e-3);
J b = ceil(a);
J expected = MakeJet(ceil(a.a), 0.0, 0.0);
EXPECT_EQ(expected, b);
}
{ // Check that ceil of a positive number works.
J a = MakeJet(10.123, -2.7, 1e-3);
J b = ceil(a);
J expected = MakeJet(ceil(a.a), 0.0, 0.0);
EXPECT_EQ(expected, b);
}
#ifdef CERES_USE_CXX11
{ // Check that cbrt(x * x * x) == x.
J z = x * x * x;
J w = cbrt(z);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, x);
}
{ // Check that cbrt(y) * cbrt(y) * cbrt(y) == y.
J z = cbrt(y);
J w = z * z * z;
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(w, y);
}
{ // Check that cbrt(x) == pow(x, 1/3).
J z = cbrt(x);
J w = pow(x, 1.0 / 3.0);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z, w);
}
NumericalTest("cbrt", cbrt<double, 2>, -1.0);
NumericalTest("cbrt", cbrt<double, 2>, -1e-5);
NumericalTest("cbrt", cbrt<double, 2>, 1e-5);
NumericalTest("cbrt", cbrt<double, 2>, 1.0);
{ // Check that exp2(x) == exp(x * log(2))
J z = exp2(x);
J w = exp(x * log(2.0));
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z, w);
}
NumericalTest("exp2", exp2<double, 2>, -1.0);
NumericalTest("exp2", exp2<double, 2>, -1e-5);
NumericalTest("exp2", exp2<double, 2>, -1e-200);
NumericalTest("exp2", exp2<double, 2>, 0.0);
NumericalTest("exp2", exp2<double, 2>, 1e-200);
NumericalTest("exp2", exp2<double, 2>, 1e-5);
NumericalTest("exp2", exp2<double, 2>, 1.0);
{ // Check that log2(x) == log(x) / log(2)
J z = log2(x);
J w = log(x) / log(2.0);
VL << "z = " << z;
VL << "w = " << w;
ExpectJetsClose(z, w);
}
NumericalTest("log2", log2<double, 2>, 1e-5);
NumericalTest("log2", log2<double, 2>, 1.0);
NumericalTest("log2", log2<double, 2>, 100.0);
{ // Check that hypot(x, y) == sqrt(x^2 + y^2)
J h = hypot(x, y);
J s = sqrt(x*x + y*y);
VL << "h = " << h;
VL << "s = " << s;
ExpectJetsClose(h, s);
}
{ // Check that hypot(x, x) == sqrt(2) * abs(x)
J h = hypot(x, x);
J s = sqrt(2.0) * abs(x);
VL << "h = " << h;
VL << "s = " << s;
ExpectJetsClose(h, s);
}
{ // Check that the derivative is zero tangentially to the circle:
J h = hypot(MakeJet(2.0, 1.0, 1.0), MakeJet(2.0, 1.0, -1.0));
VL << "h = " << h;
ExpectJetsClose(h, MakeJet(sqrt(8.0), std::sqrt(2.0), 0.0));
}
{ // Check that hypot(x, 0) == x
J zero = MakeJet(0.0, 2.0, 3.14);
J h = hypot(x, zero);
VL << "h = " << h;
ExpectJetsClose(x, h);
}
{ // Check that hypot(0, y) == y
J zero = MakeJet(0.0, 2.0, 3.14);
J h = hypot(zero, y);
VL << "h = " << h;
ExpectJetsClose(y, h);
}
{ // Check that hypot(x, 0) == sqrt(x * x) == x, even when x * x underflows:
EXPECT_EQ(DBL_MIN * DBL_MIN, 0.0); // Make sure it underflows
J huge = MakeJet(DBL_MIN, 2.0, 3.14);
J h = hypot(huge, J(0.0));
VL << "h = " << h;
ExpectJetsClose(h, huge);
}
{ // Check that hypot(x, 0) == sqrt(x * x) == x, even when x * x overflows:
EXPECT_EQ(DBL_MAX * DBL_MAX, std::numeric_limits<double>::infinity());
J huge = MakeJet(DBL_MAX, 2.0, 3.14);
J h = hypot(huge, J(0.0));
VL << "h = " << h;
ExpectJetsClose(h, huge);
}
NumericalTest2("hypot", hypot<double, 2>, 0.0, 1e-5);
NumericalTest2("hypot", hypot<double, 2>, -1e-5, 0.0);
NumericalTest2("hypot", hypot<double, 2>, 1e-5, 1e-5);
NumericalTest2("hypot", hypot<double, 2>, 0.0, 1.0);
NumericalTest2("hypot", hypot<double, 2>, 1e-3, 1.0);
NumericalTest2("hypot", hypot<double, 2>, 1e-3, -1.0);
NumericalTest2("hypot", hypot<double, 2>, -1e-3, 1.0);
NumericalTest2("hypot", hypot<double, 2>, -1e-3, -1.0);
NumericalTest2("hypot", hypot<double, 2>, 1.0, 2.0);
{
J z = fmax(x, y);
VL << "z = " << z;
ExpectJetsClose(x, z);
}
{
J z = fmin(x, y);
VL << "z = " << z;
ExpectJetsClose(y, z);
}
#endif
}
TEST(Jet, JetsInEigenMatrices) {
J x = MakeJet(2.3, -2.7, 1e-3);
J y = MakeJet(1.7, 0.5, 1e+2);
J z = MakeJet(5.3, -4.7, 1e-3);
J w = MakeJet(9.7, 1.5, 10.1);
Eigen::Matrix<J, 2, 2> M;
Eigen::Matrix<J, 2, 1> v, r1, r2;
M << x, y, z, w;
v << x, z;
// Check that M * v == (v^T * M^T)^T
r1 = M * v;
r2 = (v.transpose() * M.transpose()).transpose();
ExpectJetsClose(r1(0), r2(0));
ExpectJetsClose(r1(1), r2(1));
}
TEST(JetTraitsTest, ClassificationMixed) {
Jet<double, 3> a(5.5, 0);
a.v[0] = std::numeric_limits<double>::quiet_NaN();
a.v[1] = std::numeric_limits<double>::infinity();
a.v[2] = -std::numeric_limits<double>::infinity();
EXPECT_FALSE(IsFinite(a));
EXPECT_FALSE(IsNormal(a));
EXPECT_TRUE(IsInfinite(a));
EXPECT_TRUE(IsNaN(a));
}
TEST(JetTraitsTest, ClassificationNaN) {
Jet<double, 3> a(5.5, 0);
a.v[0] = std::numeric_limits<double>::quiet_NaN();
a.v[1] = 0.0;
a.v[2] = 0.0;
EXPECT_FALSE(IsFinite(a));
EXPECT_FALSE(IsNormal(a));
EXPECT_FALSE(IsInfinite(a));
EXPECT_TRUE(IsNaN(a));
}
TEST(JetTraitsTest, ClassificationInf) {
Jet<double, 3> a(5.5, 0);
a.v[0] = std::numeric_limits<double>::infinity();
a.v[1] = 0.0;
a.v[2] = 0.0;
EXPECT_FALSE(IsFinite(a));
EXPECT_FALSE(IsNormal(a));
EXPECT_TRUE(IsInfinite(a));
EXPECT_FALSE(IsNaN(a));
}
TEST(JetTraitsTest, ClassificationFinite) {
Jet<double, 3> a(5.5, 0);
a.v[0] = 100.0;
a.v[1] = 1.0;
a.v[2] = 3.14159;
EXPECT_TRUE(IsFinite(a));
EXPECT_TRUE(IsNormal(a));
EXPECT_FALSE(IsInfinite(a));
EXPECT_FALSE(IsNaN(a));
}
// ScalarBinaryOpTraits is only supported on Eigen versions >= 3.3
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
TEST(JetTraitsTest, MatrixScalarUnaryOps) {
const J x = MakeJet(2.3, -2.7, 1e-3);
const J y = MakeJet(1.7, 0.5, 1e+2);
Eigen::Matrix<J, 2, 1> a;
a << x, y;
const J sum = a.sum();
const J sum2 = a(0) + a(1);
ExpectJetsClose(sum, sum2);
}
TEST(JetTraitsTest, MatrixScalarBinaryOps) {
const J x = MakeJet(2.3, -2.7, 1e-3);
const J y = MakeJet(1.7, 0.5, 1e+2);
const J z = MakeJet(5.3, -4.7, 1e-3);
const J w = MakeJet(9.7, 1.5, 10.1);
Eigen::Matrix<J, 2, 2> M;
Eigen::Vector2d v;
M << x, y, z, w;
v << 0.6, -2.1;
// Check that M * v == M * v.cast<J>().
const Eigen::Matrix<J, 2, 1> r1 = M * v;
const Eigen::Matrix<J, 2, 1> r2 = M * v.cast<J>();
ExpectJetsClose(r1(0), r2(0));
ExpectJetsClose(r1(1), r2(1));
// Check that M * a == M * T(a).
const double a = 3.1;
const Eigen::Matrix<J, 2, 2> r3 = M * a;
const Eigen::Matrix<J, 2, 2> r4 = M * J(a);
ExpectJetsClose(r3(0, 0), r4(0, 0));
ExpectJetsClose(r3(1, 0), r4(1, 0));
ExpectJetsClose(r3(0, 1), r4(0, 1));
ExpectJetsClose(r3(1, 1), r4(1, 1));
}
TEST(JetTraitsTest, ArrayScalarUnaryOps) {
const J x = MakeJet(2.3, -2.7, 1e-3);
const J y = MakeJet(1.7, 0.5, 1e+2);
Eigen::Array<J, 2, 1> a;
a << x, y;
const J sum = a.sum();
const J sum2 = a(0) + a(1);
ExpectJetsClose(sum, sum2);
}
TEST(JetTraitsTest, ArrayScalarBinaryOps) {
const J x = MakeJet(2.3, -2.7, 1e-3);
const J y = MakeJet(1.7, 0.5, 1e+2);
Eigen::Array<J, 2, 1> a;
Eigen::Array2d b;
a << x, y;
b << 0.6, -2.1;
// Check that a * b == a * b.cast<T>()
const Eigen::Array<J, 2, 1> r1 = a * b;
const Eigen::Array<J, 2, 1> r2 = a * b.cast<J>();
ExpectJetsClose(r1(0), r2(0));
ExpectJetsClose(r1(1), r2(1));
// Check that a * c == a * T(c).
const double c = 3.1;
const Eigen::Array<J, 2, 1> r3 = a * c;
const Eigen::Array<J, 2, 1> r4 = a * J(c);
ExpectJetsClose(r3(0), r3(0));
ExpectJetsClose(r4(1), r4(1));
}
#endif // EIGEN_VERSION_AT_LEAST(3, 3, 0)
} // namespace internal
} // namespace ceres