You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
725 lines
21 KiB
725 lines
21 KiB
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
|
|
#define FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <map>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <cmath>
|
|
|
|
#ifndef SIZE_MAX
|
|
#define SIZE_MAX ((size_t) -1)
|
|
#endif
|
|
|
|
#include "FLANN/general.h"
|
|
#include "FLANN/algorithms/nn_index.h"
|
|
#include "FLANN/algorithms/dist.h"
|
|
#include "FLANN/util/matrix.h"
|
|
#include "FLANN/util/result_set.h"
|
|
#include "FLANN/util/heap.h"
|
|
#include "FLANN/util/allocator.h"
|
|
#include "FLANN/util/random.h"
|
|
#include "FLANN/util/saving.h"
|
|
#include "FLANN/util/serialization.h"
|
|
|
|
namespace flann
|
|
{
|
|
|
|
struct HierarchicalClusteringIndexParams : public IndexParams
|
|
{
|
|
HierarchicalClusteringIndexParams(int branching = 32,
|
|
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
|
|
int trees = 4, int leaf_max_size = 100)
|
|
{
|
|
(*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
|
|
// The branching factor used in the hierarchical clustering
|
|
(*this)["branching"] = branching;
|
|
// Algorithm used for picking the initial cluster centers
|
|
(*this)["centers_init"] = centers_init;
|
|
// number of parallel trees to build
|
|
(*this)["trees"] = trees;
|
|
// maximum leaf size
|
|
(*this)["leaf_max_size"] = leaf_max_size;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
* Hierarchical index
|
|
*
|
|
* Contains a tree constructed through a hierarchical clustering
|
|
* and other information for indexing a set of points for nearest-neighbour matching.
|
|
*/
|
|
template <typename Distance>
|
|
class HierarchicalClusteringIndex : public NNIndex<Distance>
|
|
{
|
|
public:
|
|
typedef typename Distance::ElementType ElementType;
|
|
typedef typename Distance::ResultType DistanceType;
|
|
|
|
typedef NNIndex<Distance> BaseClass;
|
|
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* @param index_params
|
|
* @param d
|
|
*/
|
|
HierarchicalClusteringIndex(const IndexParams& index_params = HierarchicalClusteringIndexParams(), Distance d = Distance())
|
|
: BaseClass(index_params, d)
|
|
{
|
|
memoryCounter_ = 0;
|
|
|
|
branching_ = get_param(index_params_,"branching",32);
|
|
centers_init_ = get_param(index_params_,"centers_init", FLANN_CENTERS_RANDOM);
|
|
trees_ = get_param(index_params_,"trees",4);
|
|
leaf_max_size_ = get_param(index_params_,"leaf_max_size",100);
|
|
|
|
initCenterChooser();
|
|
}
|
|
|
|
|
|
/**
|
|
* Index constructor
|
|
*
|
|
* Params:
|
|
* inputData = dataset with the input features
|
|
* params = parameters passed to the hierarchical k-means algorithm
|
|
*/
|
|
HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
|
|
Distance d = Distance())
|
|
: BaseClass(index_params, d)
|
|
{
|
|
memoryCounter_ = 0;
|
|
|
|
branching_ = get_param(index_params_,"branching",32);
|
|
centers_init_ = get_param(index_params_,"centers_init", FLANN_CENTERS_RANDOM);
|
|
trees_ = get_param(index_params_,"trees",4);
|
|
leaf_max_size_ = get_param(index_params_,"leaf_max_size",100);
|
|
|
|
initCenterChooser();
|
|
|
|
setDataset(inputData);
|
|
|
|
chooseCenters_->setDataSize(veclen_);
|
|
}
|
|
|
|
|
|
HierarchicalClusteringIndex(const HierarchicalClusteringIndex& other) : BaseClass(other),
|
|
memoryCounter_(other.memoryCounter_),
|
|
branching_(other.branching_),
|
|
trees_(other.trees_),
|
|
centers_init_(other.centers_init_),
|
|
leaf_max_size_(other.leaf_max_size_)
|
|
|
|
{
|
|
initCenterChooser();
|
|
tree_roots_.resize(other.tree_roots_.size());
|
|
for (size_t i=0;i<tree_roots_.size();++i) {
|
|
copyTree(tree_roots_[i], other.tree_roots_[i]);
|
|
}
|
|
}
|
|
|
|
HierarchicalClusteringIndex& operator=(HierarchicalClusteringIndex other)
|
|
{
|
|
this->swap(other);
|
|
return *this;
|
|
}
|
|
|
|
|
|
void initCenterChooser()
|
|
{
|
|
switch(centers_init_) {
|
|
case FLANN_CENTERS_RANDOM:
|
|
chooseCenters_ = new RandomCenterChooser<Distance>(distance_, points_);
|
|
break;
|
|
case FLANN_CENTERS_GONZALES:
|
|
chooseCenters_ = new GonzalesCenterChooser<Distance>(distance_, points_);
|
|
break;
|
|
case FLANN_CENTERS_KMEANSPP:
|
|
chooseCenters_ = new KMeansppCenterChooser<Distance>(distance_, points_);
|
|
break;
|
|
case FLANN_CENTERS_GROUPWISE:
|
|
chooseCenters_ = new GroupWiseCenterChooser<Distance>(distance_, points_);
|
|
break;
|
|
default:
|
|
throw FLANNException("Unknown algorithm for choosing initial centers.");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Index destructor.
|
|
*
|
|
* Release the memory used by the index.
|
|
*/
|
|
virtual ~HierarchicalClusteringIndex()
|
|
{
|
|
delete chooseCenters_;
|
|
freeIndex();
|
|
}
|
|
|
|
BaseClass* clone() const
|
|
{
|
|
return new HierarchicalClusteringIndex(*this);
|
|
}
|
|
|
|
/**
|
|
* Computes the inde memory usage
|
|
* Returns: memory used by the index
|
|
*/
|
|
int usedMemory() const
|
|
{
|
|
return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
|
|
}
|
|
|
|
using BaseClass::buildIndex;
|
|
|
|
void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
|
|
{
|
|
assert(points.cols==veclen_);
|
|
size_t old_size = size_;
|
|
|
|
extendDataset(points);
|
|
|
|
if (rebuild_threshold>1 && size_at_build_*rebuild_threshold<size_) {
|
|
buildIndex();
|
|
}
|
|
else {
|
|
for (size_t i=0;i<points.rows;++i) {
|
|
for (int j = 0; j < trees_; j++) {
|
|
addPointToTree(tree_roots_[j], old_size + i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return FLANN_INDEX_HIERARCHICAL;
|
|
}
|
|
|
|
|
|
template<typename Archive>
|
|
void serialize(Archive& ar)
|
|
{
|
|
ar.setObject(this);
|
|
|
|
ar & *static_cast<NNIndex<Distance>*>(this);
|
|
|
|
ar & branching_;
|
|
ar & trees_;
|
|
ar & centers_init_;
|
|
ar & leaf_max_size_;
|
|
|
|
if (Archive::is_loading::value) {
|
|
tree_roots_.resize(trees_);
|
|
}
|
|
for (size_t i=0;i<tree_roots_.size();++i) {
|
|
if (Archive::is_loading::value) {
|
|
tree_roots_[i] = new(pool_) Node();
|
|
}
|
|
ar & *tree_roots_[i];
|
|
}
|
|
|
|
if (Archive::is_loading::value) {
|
|
index_params_["algorithm"] = getType();
|
|
index_params_["branching"] = branching_;
|
|
index_params_["trees"] = trees_;
|
|
index_params_["centers_init"] = centers_init_;
|
|
index_params_["leaf_size"] = leaf_max_size_;
|
|
}
|
|
}
|
|
|
|
void saveIndex(FILE* stream)
|
|
{
|
|
serialization::SaveArchive sa(stream);
|
|
sa & *this;
|
|
}
|
|
|
|
|
|
void loadIndex(FILE* stream)
|
|
{
|
|
serialization::LoadArchive la(stream);
|
|
la & *this;
|
|
}
|
|
|
|
|
|
/**
|
|
* Find set of nearest neighbors to vec. Their indices are stored inside
|
|
* the result object.
|
|
*
|
|
* Params:
|
|
* result = the result object in which the indices of the nearest-neighbors are stored
|
|
* vec = the vector for which to search the nearest neighbors
|
|
* searchParams = parameters that influence the search algorithm (checks)
|
|
*/
|
|
|
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const
|
|
{
|
|
if (removed_) {
|
|
findNeighborsWithRemoved<true>(result, vec, searchParams);
|
|
}
|
|
else {
|
|
findNeighborsWithRemoved<false>(result, vec, searchParams);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
|
|
/**
|
|
* Builds the index
|
|
*/
|
|
void buildIndexImpl()
|
|
{
|
|
chooseCenters_->setDataSize(veclen_);
|
|
|
|
if (branching_<2) {
|
|
throw FLANNException("Branching factor must be at least 2");
|
|
}
|
|
tree_roots_.resize(trees_);
|
|
std::vector<int> indices(size_);
|
|
for (int i=0; i<trees_; ++i) {
|
|
for (size_t j=0; j<size_; ++j) {
|
|
indices[j] = j;
|
|
}
|
|
tree_roots_[i] = new(pool_) Node();
|
|
computeClustering(tree_roots_[i], &indices[0], size_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
struct PointInfo
|
|
{
|
|
/** Point index */
|
|
size_t index;
|
|
/** Point data */
|
|
ElementType* point;
|
|
|
|
private:
|
|
template<typename Archive>
|
|
void serialize(Archive& ar)
|
|
{
|
|
typedef HierarchicalClusteringIndex<Distance> Index;
|
|
Index* obj = static_cast<Index*>(ar.getObject());
|
|
|
|
ar & index;
|
|
// ar & point;
|
|
|
|
if (Archive::is_loading::value) {
|
|
point = obj->points_[index];
|
|
}
|
|
}
|
|
friend struct serialization::access;
|
|
};
|
|
|
|
/**
|
|
* Struture representing a node in the hierarchical k-means tree.
|
|
*/
|
|
struct Node
|
|
{
|
|
/**
|
|
* The cluster center
|
|
*/
|
|
ElementType* pivot;
|
|
size_t pivot_index;
|
|
/**
|
|
* Child nodes (only for non-terminal nodes)
|
|
*/
|
|
std::vector<Node*> childs;
|
|
/**
|
|
* Node points (only for terminal nodes)
|
|
*/
|
|
std::vector<PointInfo> points;
|
|
|
|
Node(){
|
|
pivot = NULL;
|
|
pivot_index = SIZE_MAX;
|
|
}
|
|
/**
|
|
* destructor
|
|
* calling Node destructor explicitly
|
|
*/
|
|
~Node()
|
|
{
|
|
for(size_t i=0; i<childs.size(); i++){
|
|
childs[i]->~Node();
|
|
pivot = NULL;
|
|
pivot_index = -1;
|
|
}
|
|
};
|
|
|
|
private:
|
|
template<typename Archive>
|
|
void serialize(Archive& ar)
|
|
{
|
|
typedef HierarchicalClusteringIndex<Distance> Index;
|
|
Index* obj = static_cast<Index*>(ar.getObject());
|
|
ar & pivot_index;
|
|
if (Archive::is_loading::value) {
|
|
if (pivot_index != SIZE_MAX)
|
|
pivot = obj->points_[pivot_index];
|
|
else
|
|
pivot = NULL;
|
|
}
|
|
size_t childs_size;
|
|
if (Archive::is_saving::value) {
|
|
childs_size = childs.size();
|
|
}
|
|
ar & childs_size;
|
|
|
|
if (childs_size==0) {
|
|
ar & points;
|
|
}
|
|
else {
|
|
if (Archive::is_loading::value) {
|
|
childs.resize(childs_size);
|
|
}
|
|
for (size_t i=0;i<childs_size;++i) {
|
|
if (Archive::is_loading::value) {
|
|
childs[i] = new(obj->pool_) Node();
|
|
}
|
|
ar & *childs[i];
|
|
}
|
|
}
|
|
|
|
}
|
|
friend struct serialization::access;
|
|
};
|
|
typedef Node* NodePtr;
|
|
|
|
|
|
|
|
/**
|
|
* Alias definition for a nicer syntax.
|
|
*/
|
|
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
|
|
|
|
|
|
/**
|
|
* Clears Node tree
|
|
* calling Node destructor explicitly
|
|
*/
|
|
void freeIndex(){
|
|
for (size_t i=0; i<tree_roots_.size(); ++i) {
|
|
tree_roots_[i]->~Node();
|
|
}
|
|
pool_.free();
|
|
}
|
|
|
|
void copyTree(NodePtr& dst, const NodePtr& src)
|
|
{
|
|
dst = new(pool_) Node();
|
|
dst->pivot_index = src->pivot_index;
|
|
dst->pivot = points_[dst->pivot_index];
|
|
|
|
if (src->childs.size()==0) {
|
|
dst->points = src->points;
|
|
}
|
|
else {
|
|
dst->childs.resize(src->childs.size());
|
|
for (size_t i=0;i<src->childs.size();++i) {
|
|
copyTree(dst->childs[i], src->childs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void computeLabels(int* indices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
|
|
{
|
|
cost = 0;
|
|
for (int i=0; i<indices_length; ++i) {
|
|
ElementType* point = points_[indices[i]];
|
|
DistanceType dist = distance_(point, points_[centers[0]], veclen_);
|
|
labels[i] = 0;
|
|
for (int j=1; j<centers_length; ++j) {
|
|
DistanceType new_dist = distance_(point, points_[centers[j]], veclen_);
|
|
if (dist>new_dist) {
|
|
labels[i] = j;
|
|
dist = new_dist;
|
|
}
|
|
}
|
|
cost += dist;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The method responsible with actually doing the recursive hierarchical
|
|
* clustering
|
|
*
|
|
* Params:
|
|
* node = the node to cluster
|
|
* indices = indices of the points belonging to the current node
|
|
* branching = the branching factor to use in the clustering
|
|
*
|
|
*/
|
|
void computeClustering(NodePtr node, int* indices, int indices_length)
|
|
{
|
|
if (indices_length < leaf_max_size_) { // leaf node
|
|
node->points.resize(indices_length);
|
|
for (int i=0;i<indices_length;++i) {
|
|
node->points[i].index = indices[i];
|
|
node->points[i].point = points_[indices[i]];
|
|
}
|
|
node->childs.clear();
|
|
return;
|
|
}
|
|
|
|
std::vector<int> centers(branching_);
|
|
std::vector<int> labels(indices_length);
|
|
|
|
int centers_length;
|
|
(*chooseCenters_)(branching_, indices, indices_length, ¢ers[0], centers_length);
|
|
|
|
if (centers_length<branching_) {
|
|
node->points.resize(indices_length);
|
|
for (int i=0;i<indices_length;++i) {
|
|
node->points[i].index = indices[i];
|
|
node->points[i].point = points_[indices[i]];
|
|
}
|
|
node->childs.clear();
|
|
return;
|
|
}
|
|
|
|
|
|
// assign points to clusters
|
|
DistanceType cost;
|
|
computeLabels(indices, indices_length, ¢ers[0], centers_length, &labels[0], cost);
|
|
|
|
node->childs.resize(branching_);
|
|
int start = 0;
|
|
int end = start;
|
|
for (int i=0; i<branching_; ++i) {
|
|
for (int j=0; j<indices_length; ++j) {
|
|
if (labels[j]==i) {
|
|
std::swap(indices[j],indices[end]);
|
|
std::swap(labels[j],labels[end]);
|
|
end++;
|
|
}
|
|
}
|
|
|
|
node->childs[i] = new(pool_) Node();
|
|
node->childs[i]->pivot_index = centers[i];
|
|
node->childs[i]->pivot = points_[centers[i]];
|
|
node->childs[i]->points.clear();
|
|
computeClustering(node->childs[i],indices+start, end-start);
|
|
start=end;
|
|
}
|
|
}
|
|
|
|
|
|
template<bool with_removed>
|
|
void findNeighborsWithRemoved(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const
|
|
{
|
|
int maxChecks = searchParams.checks;
|
|
|
|
// Priority queue storing intermediate branches in the best-bin-first search
|
|
Heap<BranchSt>* heap = new Heap<BranchSt>(size_);
|
|
|
|
DynamicBitset checked(size_);
|
|
int checks = 0;
|
|
for (int i=0; i<trees_; ++i) {
|
|
findNN<with_removed>(tree_roots_[i], result, vec, checks, maxChecks, heap, checked);
|
|
}
|
|
|
|
BranchSt branch;
|
|
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
|
|
NodePtr node = branch.node;
|
|
findNN<with_removed>(node, result, vec, checks, maxChecks, heap, checked);
|
|
}
|
|
|
|
delete heap;
|
|
}
|
|
|
|
|
|
/**
|
|
* Performs one descent in the hierarchical k-means tree. The branches not
|
|
* visited are stored in a priority queue.
|
|
*
|
|
* Params:
|
|
* node = node to explore
|
|
* result = container for the k-nearest neighbors found
|
|
* vec = query points
|
|
* checks = how many points in the dataset have been checked so far
|
|
* maxChecks = maximum dataset points to checks
|
|
*/
|
|
|
|
template<bool with_removed>
|
|
void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
|
|
Heap<BranchSt>* heap, DynamicBitset& checked) const
|
|
{
|
|
if (node->childs.empty()) {
|
|
if (checks>=maxChecks) {
|
|
if (result.full()) return;
|
|
}
|
|
|
|
for (size_t i=0; i<node->points.size(); ++i) {
|
|
PointInfo& pointInfo = node->points[i];
|
|
if (with_removed) {
|
|
if (removed_points_.test(pointInfo.index)) continue;
|
|
}
|
|
if (checked.test(pointInfo.index)) continue;
|
|
DistanceType dist = distance_(pointInfo.point, vec, veclen_);
|
|
result.addPoint(dist, pointInfo.index);
|
|
checked.set(pointInfo.index);
|
|
++checks;
|
|
}
|
|
}
|
|
else {
|
|
DistanceType* domain_distances = new DistanceType[branching_];
|
|
int best_index = 0;
|
|
domain_distances[best_index] = distance_(vec, node->childs[best_index]->pivot, veclen_);
|
|
for (int i=1; i<branching_; ++i) {
|
|
domain_distances[i] = distance_(vec, node->childs[i]->pivot, veclen_);
|
|
if (domain_distances[i]<domain_distances[best_index]) {
|
|
best_index = i;
|
|
}
|
|
}
|
|
for (int i=0; i<branching_; ++i) {
|
|
if (i!=best_index) {
|
|
heap->insert(BranchSt(node->childs[i],domain_distances[i]));
|
|
}
|
|
}
|
|
delete[] domain_distances;
|
|
findNN<with_removed>(node->childs[best_index],result,vec, checks, maxChecks, heap, checked);
|
|
}
|
|
}
|
|
|
|
void addPointToTree(NodePtr node, size_t index)
|
|
{
|
|
ElementType* point = points_[index];
|
|
|
|
if (node->childs.empty()) { // leaf node
|
|
PointInfo pointInfo;
|
|
pointInfo.point = point;
|
|
pointInfo.index = index;
|
|
node->points.push_back(pointInfo);
|
|
|
|
if (node->points.size()>=size_t(branching_)) {
|
|
std::vector<int> indices(node->points.size());
|
|
|
|
for (size_t i=0;i<node->points.size();++i) {
|
|
indices[i] = node->points[i].index;
|
|
}
|
|
computeClustering(node, &indices[0], indices.size());
|
|
}
|
|
}
|
|
else {
|
|
// find the closest child
|
|
int closest = 0;
|
|
ElementType* center = node->childs[closest]->pivot;
|
|
DistanceType dist = distance_(center, point, veclen_);
|
|
for (size_t i=1;i<size_t(branching_);++i) {
|
|
center = node->childs[i]->pivot;
|
|
DistanceType crt_dist = distance_(center, point, veclen_);
|
|
if (crt_dist<dist) {
|
|
dist = crt_dist;
|
|
closest = i;
|
|
}
|
|
}
|
|
addPointToTree(node->childs[closest], index);
|
|
}
|
|
}
|
|
|
|
void swap(HierarchicalClusteringIndex& other)
|
|
{
|
|
BaseClass::swap(other);
|
|
|
|
std::swap(tree_roots_, other.tree_roots_);
|
|
std::swap(pool_, other.pool_);
|
|
std::swap(memoryCounter_, other.memoryCounter_);
|
|
std::swap(branching_, other.branching_);
|
|
std::swap(trees_, other.trees_);
|
|
std::swap(centers_init_, other.centers_init_);
|
|
std::swap(leaf_max_size_, other.leaf_max_size_);
|
|
std::swap(chooseCenters_, other.chooseCenters_);
|
|
}
|
|
|
|
private:
|
|
|
|
/**
|
|
* The root nodes in the tree.
|
|
*/
|
|
std::vector<Node*> tree_roots_;
|
|
|
|
/**
|
|
* Pooled memory allocator.
|
|
*
|
|
* Using a pooled memory allocator is more efficient
|
|
* than allocating memory directly when there is a large
|
|
* number small of memory allocations.
|
|
*/
|
|
PooledAllocator pool_;
|
|
|
|
/**
|
|
* Memory occupied by the index.
|
|
*/
|
|
int memoryCounter_;
|
|
|
|
/** index parameters */
|
|
/**
|
|
* Branching factor to use for clustering
|
|
*/
|
|
int branching_;
|
|
|
|
/**
|
|
* How many parallel trees to build
|
|
*/
|
|
int trees_;
|
|
|
|
/**
|
|
* Algorithm to use for choosing cluster centers
|
|
*/
|
|
flann_centers_init_t centers_init_;
|
|
|
|
/**
|
|
* Max size of leaf nodes
|
|
*/
|
|
int leaf_max_size_;
|
|
|
|
/**
|
|
* Algorithm used to choose initial centers
|
|
*/
|
|
CenterChooser<Distance>* chooseCenters_;
|
|
|
|
USING_BASECLASS_SYMBOLS
|
|
};
|
|
|
|
}
|
|
|
|
#endif /* FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
|