You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
8.7 KiB
235 lines
8.7 KiB
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
|
|
#define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
|
|
|
|
#include <vector>
|
|
#include "ceres/internal/macros.h"
|
|
#include "ceres/internal/port.h"
|
|
#include "ceres/sparse_matrix.h"
|
|
#include "ceres/types.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace ceres {
|
|
|
|
struct CRSMatrix;
|
|
|
|
namespace internal {
|
|
|
|
class TripletSparseMatrix;
|
|
|
|
class CompressedRowSparseMatrix : public SparseMatrix {
|
|
public:
|
|
enum StorageType {
|
|
UNSYMMETRIC,
|
|
// Matrix is assumed to be symmetric but only the lower triangular
|
|
// part of the matrix is stored.
|
|
LOWER_TRIANGULAR,
|
|
// Matrix is assumed to be symmetric but only the upper triangular
|
|
// part of the matrix is stored.
|
|
UPPER_TRIANGULAR
|
|
};
|
|
|
|
// Create a matrix with the same content as the TripletSparseMatrix
|
|
// input. We assume that input does not have any repeated
|
|
// entries.
|
|
//
|
|
// The storage type of the matrix is set to UNSYMMETRIC.
|
|
//
|
|
// Caller owns the result.
|
|
static CompressedRowSparseMatrix* FromTripletSparseMatrix(
|
|
const TripletSparseMatrix& input);
|
|
|
|
// Create a matrix with the same content as the TripletSparseMatrix
|
|
// input transposed. We assume that input does not have any repeated
|
|
// entries.
|
|
//
|
|
// The storage type of the matrix is set to UNSYMMETRIC.
|
|
//
|
|
// Caller owns the result.
|
|
static CompressedRowSparseMatrix* FromTripletSparseMatrixTransposed(
|
|
const TripletSparseMatrix& input);
|
|
|
|
// Use this constructor only if you know what you are doing. This
|
|
// creates a "blank" matrix with the appropriate amount of memory
|
|
// allocated. However, the object itself is in an inconsistent state
|
|
// as the rows and cols matrices do not match the values of
|
|
// num_rows, num_cols and max_num_nonzeros.
|
|
//
|
|
// The use case for this constructor is that when the user knows the
|
|
// size of the matrix to begin with and wants to update the layout
|
|
// manually, instead of going via the indirect route of first
|
|
// constructing a TripletSparseMatrix, which leads to more than
|
|
// double the peak memory usage.
|
|
//
|
|
// The storage type is set to UNSYMMETRIC.
|
|
CompressedRowSparseMatrix(int num_rows,
|
|
int num_cols,
|
|
int max_num_nonzeros);
|
|
|
|
// Build a square sparse diagonal matrix with num_rows rows and
|
|
// columns. The diagonal m(i,i) = diagonal(i);
|
|
//
|
|
// The storage type is set to UNSYMMETRIC
|
|
CompressedRowSparseMatrix(const double* diagonal, int num_rows);
|
|
|
|
// SparseMatrix interface.
|
|
virtual ~CompressedRowSparseMatrix();
|
|
virtual void SetZero();
|
|
virtual void RightMultiply(const double* x, double* y) const;
|
|
virtual void LeftMultiply(const double* x, double* y) const;
|
|
virtual void SquaredColumnNorm(double* x) const;
|
|
virtual void ScaleColumns(const double* scale);
|
|
|
|
virtual void ToDenseMatrix(Matrix* dense_matrix) const;
|
|
virtual void ToTextFile(FILE* file) const;
|
|
virtual int num_rows() const { return num_rows_; }
|
|
virtual int num_cols() const { return num_cols_; }
|
|
virtual int num_nonzeros() const { return rows_[num_rows_]; }
|
|
virtual const double* values() const { return &values_[0]; }
|
|
virtual double* mutable_values() { return &values_[0]; }
|
|
|
|
// Delete the bottom delta_rows.
|
|
// num_rows -= delta_rows
|
|
void DeleteRows(int delta_rows);
|
|
|
|
// Append the contents of m to the bottom of this matrix. m must
|
|
// have the same number of columns as this matrix.
|
|
void AppendRows(const CompressedRowSparseMatrix& m);
|
|
|
|
void ToCRSMatrix(CRSMatrix* matrix) const;
|
|
|
|
CompressedRowSparseMatrix* Transpose() const;
|
|
|
|
// Destructive array resizing method.
|
|
void SetMaxNumNonZeros(int num_nonzeros);
|
|
|
|
// Non-destructive array resizing method.
|
|
void set_num_rows(const int num_rows) { num_rows_ = num_rows; }
|
|
void set_num_cols(const int num_cols) { num_cols_ = num_cols; }
|
|
|
|
// Low level access methods that expose the structure of the matrix.
|
|
const int* cols() const { return &cols_[0]; }
|
|
int* mutable_cols() { return &cols_[0]; }
|
|
|
|
const int* rows() const { return &rows_[0]; }
|
|
int* mutable_rows() { return &rows_[0]; }
|
|
|
|
const StorageType storage_type() const { return storage_type_; }
|
|
void set_storage_type(const StorageType storage_type) {
|
|
storage_type_ = storage_type;
|
|
}
|
|
|
|
const std::vector<int>& row_blocks() const { return row_blocks_; }
|
|
std::vector<int>* mutable_row_blocks() { return &row_blocks_; }
|
|
|
|
const std::vector<int>& col_blocks() const { return col_blocks_; }
|
|
std::vector<int>* mutable_col_blocks() { return &col_blocks_; }
|
|
|
|
// Create a block diagonal CompressedRowSparseMatrix with the given
|
|
// block structure. The individual blocks are assumed to be laid out
|
|
// contiguously in the diagonal array, one block at a time.
|
|
//
|
|
// Caller owns the result.
|
|
static CompressedRowSparseMatrix* CreateBlockDiagonalMatrix(
|
|
const double* diagonal,
|
|
const std::vector<int>& blocks);
|
|
|
|
// Options struct to control the generation of random block sparse
|
|
// matrices in compressed row sparse format.
|
|
//
|
|
// The random matrix generation proceeds as follows.
|
|
//
|
|
// First the row and column block structure is determined by
|
|
// generating random row and column block sizes that lie within the
|
|
// given bounds.
|
|
//
|
|
// Then we walk the block structure of the resulting matrix, and with
|
|
// probability block_density detemine whether they are structurally
|
|
// zero or not. If the answer is no, then we generate entries for the
|
|
// block which are distributed normally.
|
|
struct RandomMatrixOptions {
|
|
RandomMatrixOptions()
|
|
: num_row_blocks(0),
|
|
min_row_block_size(0),
|
|
max_row_block_size(0),
|
|
num_col_blocks(0),
|
|
min_col_block_size(0),
|
|
max_col_block_size(0),
|
|
block_density(0.0) {
|
|
}
|
|
|
|
int num_row_blocks;
|
|
int min_row_block_size;
|
|
int max_row_block_size;
|
|
int num_col_blocks;
|
|
int min_col_block_size;
|
|
int max_col_block_size;
|
|
|
|
// 0 < block_density <= 1 is the probability of a block being
|
|
// present in the matrix. A given random matrix will not have
|
|
// precisely this density.
|
|
double block_density;
|
|
};
|
|
|
|
// Create a random CompressedRowSparseMatrix whose entries are
|
|
// normally distributed and whose structure is determined by
|
|
// RandomMatrixOptions.
|
|
//
|
|
// Caller owns the result.
|
|
static CompressedRowSparseMatrix* CreateRandomMatrix(
|
|
const RandomMatrixOptions& options);
|
|
|
|
private:
|
|
static CompressedRowSparseMatrix* FromTripletSparseMatrix(
|
|
const TripletSparseMatrix& input, bool transpose);
|
|
|
|
int num_rows_;
|
|
int num_cols_;
|
|
std::vector<int> rows_;
|
|
std::vector<int> cols_;
|
|
std::vector<double> values_;
|
|
StorageType storage_type_;
|
|
|
|
// If the matrix has an underlying block structure, then it can also
|
|
// carry with it row and column block sizes. This is auxilliary and
|
|
// optional information for use by algorithms operating on the
|
|
// matrix. The class itself does not make use of this information in
|
|
// any way.
|
|
std::vector<int> row_blocks_;
|
|
std::vector<int> col_blocks_;
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|
|
|
|
#endif // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
|