You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.7 KiB
137 lines
4.7 KiB
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: strandmark@google.com (Petter Strandmark)
|
|
|
|
#include "ceres/gradient_problem.h"
|
|
#include "ceres/gradient_problem_solver.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
// Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function .
|
|
class Rosenbrock : public ceres::FirstOrderFunction {
|
|
public:
|
|
virtual ~Rosenbrock() {}
|
|
|
|
virtual bool Evaluate(const double* parameters,
|
|
double* cost,
|
|
double* gradient) const {
|
|
const double x = parameters[0];
|
|
const double y = parameters[1];
|
|
|
|
cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
|
|
if (gradient != NULL) {
|
|
gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
|
|
gradient[1] = 200.0 * (y - x * x);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
virtual int NumParameters() const { return 2; }
|
|
};
|
|
|
|
TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) {
|
|
const double expected_tolerance = 1e-9;
|
|
double parameters[2] = {-1.2, 0.0};
|
|
|
|
ceres::GradientProblemSolver::Options options;
|
|
ceres::GradientProblemSolver::Summary summary;
|
|
ceres::GradientProblem problem(new Rosenbrock());
|
|
ceres::Solve(options, problem, parameters, &summary);
|
|
|
|
EXPECT_EQ(CONVERGENCE, summary.termination_type);
|
|
EXPECT_NEAR(1.0, parameters[0], expected_tolerance);
|
|
EXPECT_NEAR(1.0, parameters[1], expected_tolerance);
|
|
}
|
|
|
|
class QuadraticFunction : public ceres::FirstOrderFunction {
|
|
virtual ~QuadraticFunction() {}
|
|
virtual bool Evaluate(const double* parameters,
|
|
double* cost,
|
|
double* gradient) const {
|
|
const double x = parameters[0];
|
|
*cost = 0.5 * (5.0 - x) * (5.0 - x);
|
|
if (gradient != NULL) {
|
|
gradient[0] = x - 5.0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
virtual int NumParameters() const { return 1; }
|
|
};
|
|
|
|
struct RememberingCallback : public IterationCallback {
|
|
explicit RememberingCallback(double *x) : calls(0), x(x) {}
|
|
virtual ~RememberingCallback() {}
|
|
virtual CallbackReturnType operator()(const IterationSummary& summary) {
|
|
x_values.push_back(*x);
|
|
return SOLVER_CONTINUE;
|
|
}
|
|
int calls;
|
|
double *x;
|
|
std::vector<double> x_values;
|
|
};
|
|
|
|
|
|
TEST(Solver, UpdateStateEveryIterationOption) {
|
|
double x = 50.0;
|
|
const double original_x = x;
|
|
|
|
ceres::GradientProblem problem(new QuadraticFunction);
|
|
ceres::GradientProblemSolver::Options options;
|
|
RememberingCallback callback(&x);
|
|
options.callbacks.push_back(&callback);
|
|
ceres::GradientProblemSolver::Summary summary;
|
|
|
|
int num_iterations;
|
|
|
|
// First try: no updating.
|
|
ceres::Solve(options, problem, &x, &summary);
|
|
num_iterations = summary.iterations.size() - 1;
|
|
EXPECT_GT(num_iterations, 1);
|
|
for (int i = 0; i < callback.x_values.size(); ++i) {
|
|
EXPECT_EQ(50.0, callback.x_values[i]);
|
|
}
|
|
|
|
// Second try: with updating
|
|
x = 50.0;
|
|
options.update_state_every_iteration = true;
|
|
callback.x_values.clear();
|
|
ceres::Solve(options, problem, &x, &summary);
|
|
num_iterations = summary.iterations.size() - 1;
|
|
EXPECT_GT(num_iterations, 1);
|
|
EXPECT_EQ(original_x, callback.x_values[0]);
|
|
EXPECT_NE(original_x, callback.x_values[1]);
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|