You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
354 lines
11 KiB
354 lines
11 KiB
# -*- coding: utf-8 -*-
|
|
|
|
# Form implementation generated from reading ui file 'main.py'
|
|
#
|
|
# Created by: PyQt5 UI code generator 5.12.3
|
|
#
|
|
# WARNING! All changes made in this file will be lost!
|
|
import os
|
|
import cv2
|
|
import json
|
|
import numpy as np
|
|
import glob
|
|
from PIL import Image
|
|
import matplotlib.pyplot as plt
|
|
plt.rcParams['font.sans-serif'] = ['SimHei']
|
|
plt.rcParams['axes.unicode_minus'] = False
|
|
|
|
|
|
def cart2hom(arr):
|
|
""" Convert catesian to homogenous points by appending a row of 1s
|
|
:param arr: array of shape (num_dimension x num_points)
|
|
:returns: array of shape ((num_dimension+1) x num_points)
|
|
"""
|
|
if arr.ndim == 1:
|
|
return np.hstack([arr, 1])
|
|
return np.asarray(np.vstack([arr, np.ones(arr.shape[1])]))
|
|
|
|
|
|
def compute_P_from_essential(E):
|
|
""" Compute the second camera matrix (assuming P1 = [I 0])
|
|
from an essential matrix. E = [t]R
|
|
:returns: list of 4 possible camera matrices.
|
|
"""
|
|
U, S, V = np.linalg.svd(E)
|
|
|
|
# Ensure rotation matrix are right-handed with positive determinant
|
|
if np.linalg.det(np.dot(U, V)) < 0:
|
|
V = -V
|
|
|
|
# create 4 possible camera matrices (Hartley p 258)
|
|
W = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]])
|
|
P2s = [np.vstack((np.dot(U, np.dot(W, V)).T, U[:, 2])).T,
|
|
np.vstack((np.dot(U, np.dot(W, V)).T, -U[:, 2])).T,
|
|
np.vstack((np.dot(U, np.dot(W.T, V)).T, U[:, 2])).T,
|
|
np.vstack((np.dot(U, np.dot(W.T, V)).T, -U[:, 2])).T]
|
|
|
|
return P2s
|
|
|
|
|
|
def correspondence_matrix(p1, p2):
|
|
p1x, p1y = p1[:2]
|
|
p2x, p2y = p2[:2]
|
|
|
|
return np.array([
|
|
p1x * p2x, p1x * p2y, p1x,
|
|
p1y * p2x, p1y * p2y, p1y,
|
|
p2x, p2y, np.ones(len(p1x))
|
|
]).T
|
|
|
|
return np.array([
|
|
p2x * p1x, p2x * p1y, p2x,
|
|
p2y * p1x, p2y * p1y, p2y,
|
|
p1x, p1y, np.ones(len(p1x))
|
|
]).T
|
|
|
|
|
|
def scale_and_translate_points(points):
|
|
""" Scale and translate image points so that centroid of the points
|
|
are at the origin and avg distance to the origin is equal to sqrt(2).
|
|
:param points: array of homogenous point (3 x n)
|
|
:returns: array of same input shape and its normalization matrix
|
|
"""
|
|
x = points[0]
|
|
y = points[1]
|
|
center = points.mean(axis=1) # mean of each row
|
|
cx = x - center[0] # center the points
|
|
cy = y - center[1]
|
|
dist = np.sqrt(np.power(cx, 2) + np.power(cy, 2))
|
|
scale = np.sqrt(2) / dist.mean()
|
|
norm3d = np.array([
|
|
[scale, 0, -scale * center[0]],
|
|
[0, scale, -scale * center[1]],
|
|
[0, 0, 1]
|
|
])
|
|
|
|
return np.dot(norm3d, points), norm3d
|
|
|
|
|
|
def compute_image_to_image_matrix(x1, x2, compute_essential=False):
|
|
""" Compute the fundamental or essential matrix from corresponding points
|
|
(x1, x2 3*n arrays) using the 8 point algorithm.
|
|
Each row in the A matrix below is constructed as
|
|
[x'*x, x'*y, x', y'*x, y'*y, y', x, y, 1]
|
|
"""
|
|
A = correspondence_matrix(x1, x2)
|
|
# compute linear least square solution
|
|
U, S, V = np.linalg.svd(A)
|
|
F = V[-1].reshape(3, 3)
|
|
|
|
# constrain F. Make rank 2 by zeroing out last singular value
|
|
U, S, V = np.linalg.svd(F)
|
|
S[-1] = 0
|
|
if compute_essential:
|
|
S = [1, 1, 0] # Force rank 2 and equal eigenvalues
|
|
F = np.dot(U, np.dot(np.diag(S), V))
|
|
|
|
return F
|
|
|
|
|
|
def compute_normalized_image_to_image_matrix(p1, p2, compute_essential=False):
|
|
""" Computes the fundamental or essential matrix from corresponding points
|
|
using the normalized 8 point algorithm.
|
|
:input p1, p2: corresponding points with shape 3 x n
|
|
:returns: fundamental or essential matrix with shape 3 x 3
|
|
"""
|
|
n = p1.shape[1]
|
|
if p2.shape[1] != n:
|
|
raise ValueError('Number of points do not match.')
|
|
|
|
# preprocess image coordinates
|
|
p1n, T1 = scale_and_translate_points(p1)
|
|
p2n, T2 = scale_and_translate_points(p2)
|
|
|
|
# compute F or E with the coordinates
|
|
F = compute_image_to_image_matrix(p1n, p2n, compute_essential)
|
|
|
|
# reverse preprocessing of coordinates
|
|
# We know that P1' E P2 = 0
|
|
F = np.dot(T1.T, np.dot(F, T2))
|
|
|
|
return F / F[2, 2]
|
|
|
|
|
|
def compute_fundamental_normalized(p1, p2):
|
|
return compute_normalized_image_to_image_matrix(p1, p2)
|
|
|
|
|
|
def compute_essential_normalized(p1, p2):
|
|
return compute_normalized_image_to_image_matrix(p1, p2, compute_essential=True)
|
|
|
|
|
|
def skew(x):
|
|
""" Create a skew symmetric matrix *A* from a 3d vector *x*.
|
|
Property: np.cross(A, v) == np.dot(x, v)
|
|
:param x: 3d vector
|
|
:returns: 3 x 3 skew symmetric matrix from *x*
|
|
"""
|
|
return np.array([
|
|
[0, -x[2], x[1]],
|
|
[x[2], 0, -x[0]],
|
|
[-x[1], x[0], 0]
|
|
])
|
|
|
|
|
|
def reconstruct_one_point(pt1, pt2, m1, m2):
|
|
"""
|
|
pt1 and m1 * X are parallel and cross product = 0
|
|
pt1 x m1 * X = pt2 x m2 * X = 0
|
|
"""
|
|
A = np.vstack([
|
|
np.dot(skew(pt1), m1),
|
|
np.dot(skew(pt2), m2)
|
|
])
|
|
U, S, V = np.linalg.svd(A)
|
|
P = np.ravel(V[-1, :4])
|
|
|
|
return P / P[3]
|
|
|
|
|
|
def linear_triangulation(p1, p2, m1, m2):
|
|
"""
|
|
Linear triangulation (Hartley ch 12.2 pg 312) to find the 3D point X
|
|
where p1 = m1 * X and p2 = m2 * X. Solve AX = 0.
|
|
:param p1, p2: 2D points in homo. or catesian coordinates. Shape (3 x n)
|
|
:param m1, m2: Camera matrices associated with p1 and p2. Shape (3 x 4)
|
|
:returns: 4 x n homogenous 3d triangulated points
|
|
"""
|
|
num_points = p1.shape[1]
|
|
res = np.ones((4, num_points))
|
|
|
|
for i in range(num_points):
|
|
A = np.asarray([
|
|
(p1[0, i] * m1[2, :] - m1[0, :]),
|
|
(p1[1, i] * m1[2, :] - m1[1, :]),
|
|
(p2[0, i] * m2[2, :] - m2[0, :]),
|
|
(p2[1, i] * m2[2, :] - m2[1, :])
|
|
])
|
|
|
|
_, _, V = np.linalg.svd(A)
|
|
X = V[-1, :4]
|
|
res[:, i] = X / X[3]
|
|
|
|
return res
|
|
|
|
|
|
def writetofile(dict, path):
|
|
for index, item in enumerate(dict):
|
|
dict[item] = np.array(dict[item])
|
|
dict[item] = dict[item].tolist()
|
|
js = json.dumps(dict)
|
|
with open(path, 'w') as f:
|
|
f.write(js)
|
|
print("参数已成功保存到文件")
|
|
|
|
|
|
def readfromfile(path):
|
|
with open(path, 'r') as f:
|
|
js = f.read()
|
|
mydict = json.loads(js)
|
|
print("参数读取成功")
|
|
return mydict
|
|
|
|
|
|
def camera_calibration(SaveParamPath, ImagePath):
|
|
# 循环中断
|
|
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
|
# 棋盘格尺寸
|
|
row = 11
|
|
column = 8
|
|
objpoint = np.zeros((row * column, 3), np.float32)
|
|
objpoint[:, :2] = np.mgrid[0:row, 0:column].T.reshape(-1, 2)
|
|
|
|
objpoints = [] # 3d point in real world space
|
|
imgpoints = [] # 2d points in image plane.
|
|
batch_images = glob.glob(ImagePath +os.sep+ '**.jpg')
|
|
for i, fname in enumerate(batch_images):
|
|
img = cv2.imread(batch_images[i])
|
|
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
# find chess board corners
|
|
ret, corners = cv2.findChessboardCorners(imgGray, (row, column), None)
|
|
# if found, add object points, image points (after refining them)
|
|
if ret == True:
|
|
#objpoints.append(objpoint)
|
|
#corners2 = cv2.cornerSubPix(imgGray, corners, (11, 11), (-1, -1), criteria)
|
|
#imgpoints.append(corners2)
|
|
objpoints.append(objpoint)
|
|
imgpoints.append(corners)
|
|
# Draw and display the corners
|
|
img = cv2.drawChessboardCorners(img, (row, column), corners, ret)#corners
|
|
cv2.imwrite('Checkerboard_Image/Temp_JPG/Temp_' + str(i) + '.jpg', img)
|
|
print("成功提取:", len(batch_images), "张图片角点!")
|
|
|
|
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, imgGray.shape[::-1], None, None)
|
|
dict = {'ret': ret, 'mtx': mtx, 'dist': dist, 'rvecs': rvecs, 'tvecs': tvecs}
|
|
writetofile(dict, SaveParamPath)
|
|
|
|
meanError = 0
|
|
for i in range(len(objpoints)):
|
|
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
|
|
error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)
|
|
meanError += error
|
|
print("total error: ", meanError / len(objpoints))
|
|
|
|
|
|
def epipolar_geometric(Images_Path, K):
|
|
IMG = glob.glob(Images_Path)
|
|
img1, img2 = cv2.imread(IMG[0]), cv2.imread(IMG[1])
|
|
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
|
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
|
|
|
# Initiate SURF detector
|
|
SURF = cv2.xfeatures2d.SURF_create()
|
|
|
|
# compute keypoint & descriptions
|
|
keypoint1, descriptor1 = SURF.detectAndCompute(img1_gray, None)
|
|
keypoint2, descriptor2 = SURF.detectAndCompute(img2_gray, None)
|
|
print("角点数量:", len(keypoint1), len(keypoint2))
|
|
|
|
# Find point matches
|
|
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
|
|
matches = bf.match(descriptor1, descriptor2)
|
|
print("匹配点数量:", len(matches))
|
|
|
|
src_pts = np.asarray([keypoint1[m.queryIdx].pt for m in matches])
|
|
dst_pts = np.asarray([keypoint2[m.trainIdx].pt for m in matches])
|
|
# plot
|
|
knn_image = cv2.drawMatches(img1_gray, keypoint1, img2_gray, keypoint2, matches[:-1], None, flags=2)
|
|
image_ = Image.fromarray(np.uint8(knn_image))
|
|
image_.save("MatchesImage.jpg")
|
|
|
|
# Constrain matches to fit homography
|
|
retval, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 100.0)
|
|
|
|
# We select only inlier points
|
|
points1 = src_pts[mask.ravel() == 1]
|
|
points2 = dst_pts[mask.ravel() == 1]
|
|
|
|
points1 = cart2hom(points1.T)
|
|
points2 = cart2hom(points2.T)
|
|
# plot
|
|
fig, ax = plt.subplots(1, 2)
|
|
ax[0].autoscale_view('tight')
|
|
ax[0].imshow(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
|
|
ax[0].plot(points1[0], points1[1], 'r.')
|
|
ax[1].autoscale_view('tight')
|
|
ax[1].imshow(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))
|
|
ax[1].plot(points2[0], points2[1], 'r.')
|
|
plt.savefig('MatchesPoints.jpg')
|
|
fig.show()
|
|
#
|
|
|
|
points1n = np.dot(np.linalg.inv(K), points1)
|
|
points2n = np.dot(np.linalg.inv(K), points2)
|
|
E = compute_essential_normalized(points1n, points2n)
|
|
print('Computed essential matrix:', (-E / E[0][1]))
|
|
|
|
P1 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])
|
|
P2s = compute_P_from_essential(E)
|
|
|
|
ind = -1
|
|
for i, P2 in enumerate(P2s):
|
|
# Find the correct camera parameters
|
|
d1 = reconstruct_one_point(points1n[:, 0], points2n[:, 0], P1, P2)
|
|
# Convert P2 from camera view to world view
|
|
P2_homogenous = np.linalg.inv(np.vstack([P2, [0, 0, 0, 1]]))
|
|
d2 = np.dot(P2_homogenous[:3, :4], d1)
|
|
if d1[2] > 0 and d2[2] > 0:
|
|
ind = i
|
|
|
|
P2 = np.linalg.inv(np.vstack([P2s[ind], [0, 0, 0, 1]]))[:3, :4]
|
|
Points3D = linear_triangulation(points1n, points2n, P1, P2)
|
|
|
|
return Points3D
|
|
|
|
|
|
def main():
|
|
CameraParam_Path = 'CameraParam.txt'
|
|
CheckerboardImage_Path = '.\\Checkerboard_Image'
|
|
Images_Path = 'SubstitutionCalibration_Image/*.jpg'
|
|
|
|
# 计算相机参数
|
|
camera_calibration(CameraParam_Path, CheckerboardImage_Path)
|
|
# 读取相机参数
|
|
config = readfromfile(CameraParam_Path)
|
|
K = np.array(config['mtx'])
|
|
# 计算3D点
|
|
Points3D = epipolar_geometric(Images_Path, K)
|
|
# 重建3D点
|
|
fig = plt.figure()
|
|
fig.suptitle('3D reconstructed', fontsize=16)
|
|
ax = fig.gca(projection='3d')
|
|
ax.plot(Points3D[0], Points3D[1], Points3D[2], 'b.')
|
|
ax.set_xlabel('x axis')
|
|
ax.set_ylabel('y axis')
|
|
ax.set_zlabel('z axis')
|
|
ax.view_init(elev=135, azim=90)
|
|
plt.savefig('Reconstruction.jpg')
|
|
plt.show()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|