You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/3rdparty/colmap-dev/lib/FLANN/algorithms/kmeans_index.h

1069 lines
32 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_KMEANS_INDEX_H_
#define FLANN_KMEANS_INDEX_H_
#include <algorithm>
#include <string>
#include <map>
#include <cassert>
#include <limits>
#include <cmath>
#include "FLANN/general.h"
#include "FLANN/algorithms/nn_index.h"
#include "FLANN/algorithms/dist.h"
#include <FLANN/algorithms/center_chooser.h>
#include "FLANN/util/matrix.h"
#include "FLANN/util/result_set.h"
#include "FLANN/util/heap.h"
#include "FLANN/util/allocator.h"
#include "FLANN/util/random.h"
#include "FLANN/util/saving.h"
#include "FLANN/util/logger.h"
namespace flann
{
struct KMeansIndexParams : public IndexParams
{
KMeansIndexParams(int branching = 32, int iterations = 11,
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
{
(*this)["algorithm"] = FLANN_INDEX_KMEANS;
// branching factor
(*this)["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
(*this)["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
(*this)["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
(*this)["cb_index"] = cb_index;
}
};
/**
* Hierarchical kmeans index
*
* Contains a tree constructed through a hierarchical kmeans clustering
* and other information for indexing a set of points for nearest-neighbour matching.
*/
template <typename Distance>
class KMeansIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
typedef NNIndex<Distance> BaseClass;
typedef bool needs_vector_space_distance;
flann_algorithm_t getType() const
{
return FLANN_INDEX_KMEANS;
}
/**
* Index constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the hierarchical k-means algorithm
*/
KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
Distance d = Distance())
: BaseClass(params,d), root_(NULL), memoryCounter_(0)
{
branching_ = get_param(params,"branching",32);
iterations_ = get_param(params,"iterations",11);
if (iterations_<0) {
iterations_ = (std::numeric_limits<int>::max)();
}
centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
cb_index_ = get_param(params,"cb_index",0.4f);
initCenterChooser();
setDataset(inputData);
}
/**
* Index constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the hierarchical k-means algorithm
*/
KMeansIndex(const IndexParams& params = KMeansIndexParams(), Distance d = Distance())
: BaseClass(params, d), root_(NULL), memoryCounter_(0)
{
branching_ = get_param(params,"branching",32);
iterations_ = get_param(params,"iterations",11);
if (iterations_<0) {
iterations_ = (std::numeric_limits<int>::max)();
}
centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
cb_index_ = get_param(params,"cb_index",0.4f);
initCenterChooser();
}
KMeansIndex(const KMeansIndex& other) : BaseClass(other),
branching_(other.branching_),
iterations_(other.iterations_),
centers_init_(other.centers_init_),
cb_index_(other.cb_index_),
memoryCounter_(other.memoryCounter_)
{
initCenterChooser();
copyTree(root_, other.root_);
}
KMeansIndex& operator=(KMeansIndex other)
{
this->swap(other);
return *this;
}
void initCenterChooser()
{
switch(centers_init_) {
case FLANN_CENTERS_RANDOM:
chooseCenters_ = new RandomCenterChooser<Distance>(distance_, points_);
break;
case FLANN_CENTERS_GONZALES:
chooseCenters_ = new GonzalesCenterChooser<Distance>(distance_, points_);
break;
case FLANN_CENTERS_KMEANSPP:
chooseCenters_ = new KMeansppCenterChooser<Distance>(distance_, points_);
break;
default:
throw FLANNException("Unknown algorithm for choosing initial centers.");
}
}
/**
* Index destructor.
*
* Release the memory used by the index.
*/
virtual ~KMeansIndex()
{
delete chooseCenters_;
freeIndex();
}
BaseClass* clone() const
{
return new KMeansIndex(*this);
}
void set_cb_index( float index)
{
cb_index_ = index;
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
int usedMemory() const
{
return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
}
using BaseClass::buildIndex;
void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
{
assert(points.cols==veclen_);
size_t old_size = size_;
extendDataset(points);
if (rebuild_threshold>1 && size_at_build_*rebuild_threshold<size_) {
buildIndex();
}
else {
for (size_t i=0;i<points.rows;++i) {
DistanceType dist = distance_(root_->pivot, points[i], veclen_);
addPointToTree(root_, old_size + i, dist);
}
}
}
template<typename Archive>
void serialize(Archive& ar)
{
ar.setObject(this);
ar & *static_cast<NNIndex<Distance>*>(this);
ar & branching_;
ar & iterations_;
ar & memoryCounter_;
ar & cb_index_;
ar & centers_init_;
if (Archive::is_loading::value) {
root_ = new(pool_) Node();
}
ar & *root_;
if (Archive::is_loading::value) {
index_params_["algorithm"] = getType();
index_params_["branching"] = branching_;
index_params_["iterations"] = iterations_;
index_params_["centers_init"] = centers_init_;
index_params_["cb_index"] = cb_index_;
}
}
void saveIndex(FILE* stream)
{
serialization::SaveArchive sa(stream);
sa & *this;
}
void loadIndex(FILE* stream)
{
freeIndex();
serialization::LoadArchive la(stream);
la & *this;
}
/**
* Find set of nearest neighbors to vec. Their indices are stored inside
* the result object.
*
* Params:
* result = the result object in which the indices of the nearest-neighbors are stored
* vec = the vector for which to search the nearest neighbors
* searchParams = parameters that influence the search algorithm (checks, cb_index)
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const
{
if (removed_) {
findNeighborsWithRemoved<true>(result, vec, searchParams);
}
else {
findNeighborsWithRemoved<false>(result, vec, searchParams);
}
}
/**
* Clustering function that takes a cut in the hierarchical k-means
* tree and return the clusters centers of that clustering.
* Params:
* numClusters = number of clusters to have in the clustering computed
* Returns: number of cluster centers
*/
int getClusterCenters(Matrix<DistanceType>& centers)
{
int numClusters = centers.rows;
if (numClusters<1) {
throw FLANNException("Number of clusters must be at least 1");
}
DistanceType variance;
std::vector<NodePtr> clusters(numClusters);
int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);
Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
for (int i=0; i<clusterCount; ++i) {
DistanceType* center = clusters[i]->pivot;
for (size_t j=0; j<veclen_; ++j) {
centers[i][j] = center[j];
}
}
return clusterCount;
}
protected:
/**
* Builds the index
*/
void buildIndexImpl()
{
chooseCenters_->setDataSize(veclen_);
if (branching_<2) {
throw FLANNException("Branching factor must be at least 2");
}
std::vector<int> indices(size_);
for (size_t i=0; i<size_; ++i) {
indices[i] = int(i);
}
root_ = new(pool_) Node();
computeNodeStatistics(root_, indices);
computeClustering(root_, &indices[0], (int)size_, branching_);
}
private:
struct PointInfo
{
size_t index;
ElementType* point;
private:
template<typename Archive>
void serialize(Archive& ar)
{
typedef KMeansIndex<Distance> Index;
Index* obj = static_cast<Index*>(ar.getObject());
ar & index;
// ar & point;
if (Archive::is_loading::value) point = obj->points_[index];
}
friend struct serialization::access;
};
/**
* Struture representing a node in the hierarchical k-means tree.
*/
struct Node
{
/**
* The cluster center.
*/
DistanceType* pivot=NULL;
/**
* The cluster radius.
*/
DistanceType radius;
/**
* The cluster variance.
*/
DistanceType variance;
/**
* The cluster size (number of points in the cluster)
*/
int size;
/**
* Child nodes (only for non-terminal nodes)
*/
std::vector<Node*> childs;
/**
* Node points (only for terminal nodes)
*/
std::vector<PointInfo> points;
/**
* Level
*/
// int level;
~Node()
{
delete[] pivot;
if (!childs.empty()) {
for (size_t i=0; i<childs.size(); ++i) {
childs[i]->~Node();
}
}
}
template<typename Archive>
void serialize(Archive& ar)
{
typedef KMeansIndex<Distance> Index;
Index* obj = static_cast<Index*>(ar.getObject());
if (Archive::is_loading::value) {
delete[] pivot;
pivot = new DistanceType[obj->veclen_];
}
ar & serialization::make_binary_object(pivot, obj->veclen_*sizeof(DistanceType));
ar & radius;
ar & variance;
ar & size;
size_t childs_size;
if (Archive::is_saving::value) {
childs_size = childs.size();
}
ar & childs_size;
if (childs_size==0) {
ar & points;
}
else {
if (Archive::is_loading::value) {
childs.resize(childs_size);
}
for (size_t i=0;i<childs_size;++i) {
if (Archive::is_loading::value) {
childs[i] = new(obj->pool_) Node();
}
ar & *childs[i];
}
}
}
friend struct serialization::access;
};
typedef Node* NodePtr;
/**
* Alias definition for a nicer syntax.
*/
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
/**
* Helper function
*/
void freeIndex()
{
if (root_) root_->~Node();
root_ = NULL;
pool_.free();
}
void copyTree(NodePtr& dst, const NodePtr& src)
{
dst = new(pool_) Node();
dst->pivot = new DistanceType[veclen_];
std::copy(src->pivot, src->pivot+veclen_, dst->pivot);
dst->radius = src->radius;
dst->variance = src->variance;
dst->size = src->size;
if (src->childs.size()==0) {
dst->points = src->points;
}
else {
dst->childs.resize(src->childs.size());
for (size_t i=0;i<src->childs.size();++i) {
copyTree(dst->childs[i], src->childs[i]);
}
}
}
/**
* Computes the statistics of a node (mean, radius, variance).
*
* Params:
* node = the node to use
* indices = the indices of the points belonging to the node
*/
void computeNodeStatistics(NodePtr node, const std::vector<int>& indices)
{
size_t size = indices.size();
DistanceType* mean = new DistanceType[veclen_];
memoryCounter_ += int(veclen_*sizeof(DistanceType));
memset(mean,0,veclen_*sizeof(DistanceType));
for (size_t i=0; i<size; ++i) {
ElementType* vec = points_[indices[i]];
for (size_t j=0; j<veclen_; ++j) {
mean[j] += vec[j];
}
}
DistanceType div_factor = DistanceType(1)/size;
for (size_t j=0; j<veclen_; ++j) {
mean[j] *= div_factor;
}
DistanceType radius = 0;
DistanceType variance = 0;
for (size_t i=0; i<size; ++i) {
DistanceType dist = distance_(mean, points_[indices[i]], veclen_);
if (dist>radius) {
radius = dist;
}
variance += dist;
}
variance /= size;
node->variance = variance;
node->radius = radius;
delete[] node->pivot;
node->pivot = mean;
}
/**
* The method responsible with actually doing the recursive hierarchical
* clustering
*
* Params:
* node = the node to cluster
* indices = indices of the points belonging to the current node
* branching = the branching factor to use in the clustering
*
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
*/
void computeClustering(NodePtr node, int* indices, int indices_length, int branching)
{
node->size = indices_length;
if (indices_length < branching) {
node->points.resize(indices_length);
for (int i=0;i<indices_length;++i) {
node->points[i].index = indices[i];
node->points[i].point = points_[indices[i]];
}
node->childs.clear();
return;
}
std::vector<int> centers_idx(branching);
int centers_length;
(*chooseCenters_)(branching, indices, indices_length, &centers_idx[0], centers_length);
if (centers_length<branching) {
node->points.resize(indices_length);
for (int i=0;i<indices_length;++i) {
node->points[i].index = indices[i];
node->points[i].point = points_[indices[i]];
}
node->childs.clear();
return;
}
Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_);
for (int i=0; i<centers_length; ++i) {
ElementType* vec = points_[centers_idx[i]];
for (size_t k=0; k<veclen_; ++k) {
dcenters[i][k] = double(vec[k]);
}
}
std::vector<DistanceType> radiuses(branching,0);
std::vector<int> count(branching,0);
// assign points to clusters
std::vector<int> belongs_to(indices_length);
for (int i=0; i<indices_length; ++i) {
DistanceType sq_dist = distance_(points_[indices[i]], dcenters[0], veclen_);
belongs_to[i] = 0;
for (int j=1; j<branching; ++j) {
DistanceType new_sq_dist = distance_(points_[indices[i]], dcenters[j], veclen_);
if (sq_dist>new_sq_dist) {
belongs_to[i] = j;
sq_dist = new_sq_dist;
}
}
if (sq_dist>radiuses[belongs_to[i]]) {
radiuses[belongs_to[i]] = sq_dist;
}
count[belongs_to[i]]++;
}
bool converged = false;
int iteration = 0;
while (!converged && iteration<iterations_) {
converged = true;
iteration++;
// compute the new cluster centers
for (int i=0; i<branching; ++i) {
memset(dcenters[i],0,sizeof(double)*veclen_);
radiuses[i] = 0;
}
for (int i=0; i<indices_length; ++i) {
ElementType* vec = points_[indices[i]];
double* center = dcenters[belongs_to[i]];
for (size_t k=0; k<veclen_; ++k) {
center[k] += vec[k];
}
}
for (int i=0; i<branching; ++i) {
int cnt = count[i];
double div_factor = 1.0/cnt;
for (size_t k=0; k<veclen_; ++k) {
dcenters[i][k] *= div_factor;
}
}
// reassign points to clusters
for (int i=0; i<indices_length; ++i) {
DistanceType sq_dist = distance_(points_[indices[i]], dcenters[0], veclen_);
int new_centroid = 0;
for (int j=1; j<branching; ++j) {
DistanceType new_sq_dist = distance_(points_[indices[i]], dcenters[j], veclen_);
if (sq_dist>new_sq_dist) {
new_centroid = j;
sq_dist = new_sq_dist;
}
}
if (sq_dist>radiuses[new_centroid]) {
radiuses[new_centroid] = sq_dist;
}
if (new_centroid != belongs_to[i]) {
count[belongs_to[i]]--;
count[new_centroid]++;
belongs_to[i] = new_centroid;
converged = false;
}
}
for (int i=0; i<branching; ++i) {
// if one cluster converges to an empty cluster,
// move an element into that cluster
if (count[i]==0) {
int j = (i+1)%branching;
while (count[j]<=1) {
j = (j+1)%branching;
}
for (int k=0; k<indices_length; ++k) {
if (belongs_to[k]==j) {
belongs_to[k] = i;
count[j]--;
count[i]++;
break;
}
}
converged = false;
}
}
}
std::vector<DistanceType*> centers(branching);
for (int i=0; i<branching; ++i) {
centers[i] = new DistanceType[veclen_];
memoryCounter_ += veclen_*sizeof(DistanceType);
for (size_t k=0; k<veclen_; ++k) {
centers[i][k] = (DistanceType)dcenters[i][k];
}
}
// compute kmeans clustering for each of the resulting clusters
node->childs.resize(branching);
int start = 0;
int end = start;
for (int c=0; c<branching; ++c) {
int s = count[c];
DistanceType variance = 0;
for (int i=0; i<indices_length; ++i) {
if (belongs_to[i]==c) {
variance += distance_(centers[c], points_[indices[i]], veclen_);
std::swap(indices[i],indices[end]);
std::swap(belongs_to[i],belongs_to[end]);
end++;
}
}
variance /= s;
node->childs[c] = new(pool_) Node();
node->childs[c]->radius = radiuses[c];
node->childs[c]->pivot = centers[c];
node->childs[c]->variance = variance;
computeClustering(node->childs[c],indices+start, end-start, branching);
start=end;
}
delete[] dcenters.ptr();
}
template<bool with_removed>
void findNeighborsWithRemoved(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const
{
int maxChecks = searchParams.checks;
if (maxChecks==FLANN_CHECKS_UNLIMITED) {
findExactNN<with_removed>(root_, result, vec);
}
else {
// Priority queue storing intermediate branches in the best-bin-first search
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
int checks = 0;
findNN<with_removed>(root_, result, vec, checks, maxChecks, heap);
BranchSt branch;
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
NodePtr node = branch.node;
findNN<with_removed>(node, result, vec, checks, maxChecks, heap);
}
delete heap;
}
}
/**
* Performs one descent in the hierarchical k-means tree. The branches not
* visited are stored in a priority queue.
*
* Params:
* node = node to explore
* result = container for the k-nearest neighbors found
* vec = query points
* checks = how many points in the dataset have been checked so far
* maxChecks = maximum dataset points to checks
*/
template<bool with_removed>
void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
Heap<BranchSt>* heap) const
{
// Ignore those clusters that are too far away
{
DistanceType bsq = distance_(vec, node->pivot, veclen_);
DistanceType rsq = node->radius;
DistanceType wsq = result.worstDist();
DistanceType val = bsq-rsq-wsq;
DistanceType val2 = val*val-4*rsq*wsq;
//if (val>0) {
if ((val>0)&&(val2>0)) {
return;
}
}
if (node->childs.empty()) {
if (checks>=maxChecks) {
if (result.full()) return;
}
for (int i=0; i<node->size; ++i) {
PointInfo& point_info = node->points[i];
int index = point_info.index;
if (with_removed) {
if (removed_points_.test(index)) continue;
}
DistanceType dist = distance_(point_info.point, vec, veclen_);
result.addPoint(dist, index);
++checks;
}
}
else {
int closest_center = exploreNodeBranches(node, vec, heap);
findNN<with_removed>(node->childs[closest_center],result,vec, checks, maxChecks, heap);
}
}
/**
* Helper function that computes the nearest childs of a node to a given query point.
* Params:
* node = the node
* q = the query point
* distances = array with the distances to each child node.
* Returns:
*/
int exploreNodeBranches(NodePtr node, const ElementType* q, Heap<BranchSt>* heap) const
{
std::vector<DistanceType> domain_distances(branching_);
int best_index = 0;
domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
for (int i=1; i<branching_; ++i) {
domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
if (domain_distances[i]<domain_distances[best_index]) {
best_index = i;
}
}
// float* best_center = node->childs[best_index]->pivot;
for (int i=0; i<branching_; ++i) {
if (i != best_index) {
domain_distances[i] -= cb_index_*node->childs[i]->variance;
// float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
// if (domain_distances[i]<dist_to_border) {
// domain_distances[i] = dist_to_border;
// }
heap->insert(BranchSt(node->childs[i],domain_distances[i]));
}
}
return best_index;
}
/**
* Function the performs exact nearest neighbor search by traversing the entire tree.
*/
template<bool with_removed>
void findExactNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec) const
{
// Ignore those clusters that are too far away
{
DistanceType bsq = distance_(vec, node->pivot, veclen_);
DistanceType rsq = node->radius;
DistanceType wsq = result.worstDist();
DistanceType val = bsq-rsq-wsq;
DistanceType val2 = val*val-4*rsq*wsq;
// if (val>0) {
if ((val>0)&&(val2>0)) {
return;
}
}
if (node->childs.empty()) {
for (int i=0; i<node->size; ++i) {
PointInfo& point_info = node->points[i];
int index = point_info.index;
if (with_removed) {
if (removed_points_.test(index)) continue;
}
DistanceType dist = distance_(point_info.point, vec, veclen_);
result.addPoint(dist, index);
}
}
else {
std::vector<int> sort_indices(branching_);
getCenterOrdering(node, vec, sort_indices);
for (int i=0; i<branching_; ++i) {
findExactNN<with_removed>(node->childs[sort_indices[i]],result,vec);
}
}
}
/**
* Helper function.
*
* I computes the order in which to traverse the child nodes of a particular node.
*/
void getCenterOrdering(NodePtr node, const ElementType* q, std::vector<int>& sort_indices) const
{
std::vector<DistanceType> domain_distances(branching_);
for (int i=0; i<branching_; ++i) {
DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
int j=0;
while (domain_distances[j]<dist && j<i) j++;
for (int k=i; k>j; --k) {
domain_distances[k] = domain_distances[k-1];
sort_indices[k] = sort_indices[k-1];
}
domain_distances[j] = dist;
sort_indices[j] = i;
}
}
/**
* Method that computes the squared distance from the query point q
* from inside region with center c to the border between this
* region and the region with center p
*/
DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) const
{
DistanceType sum = 0;
DistanceType sum2 = 0;
for (int i=0; i<veclen_; ++i) {
DistanceType t = c[i]-p[i];
sum += t*(q[i]-(c[i]+p[i])/2);
sum2 += t*t;
}
return sum*sum/sum2;
}
/**
* Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
* the overall variance of the clustering.
* Params:
* root = root node
* clusters = array with clusters centers (return value)
* varianceValue = variance of the clustering (return value)
* Returns:
*/
int getMinVarianceClusters(NodePtr root, std::vector<NodePtr>& clusters, int clusters_length, DistanceType& varianceValue) const
{
int clusterCount = 1;
clusters[0] = root;
DistanceType meanVariance = root->variance*root->size;
while (clusterCount<clusters_length) {
DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
int splitIndex = -1;
for (int i=0; i<clusterCount; ++i) {
if (!clusters[i]->childs.empty()) {
DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
for (int j=0; j<branching_; ++j) {
variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
}
if (variance<minVariance) {
minVariance = variance;
splitIndex = i;
}
}
}
if (splitIndex==-1) break;
if ( (branching_+clusterCount-1) > clusters_length) break;
meanVariance = minVariance;
// split node
NodePtr toSplit = clusters[splitIndex];
clusters[splitIndex] = toSplit->childs[0];
for (int i=1; i<branching_; ++i) {
clusters[clusterCount++] = toSplit->childs[i];
}
}
varianceValue = meanVariance/root->size;
return clusterCount;
}
void addPointToTree(NodePtr node, size_t index, DistanceType dist_to_pivot)
{
ElementType* point = points_[index];
if (dist_to_pivot>node->radius) {
node->radius = dist_to_pivot;
}
// if radius changed above, the variance will be an approximation
node->variance = (node->size*node->variance+dist_to_pivot)/(node->size+1);
node->size++;
if (node->childs.empty()) { // leaf node
PointInfo point_info;
point_info.index = index;
point_info.point = point;
node->points.push_back(point_info);
std::vector<int> indices(node->points.size());
for (size_t i=0;i<node->points.size();++i) {
indices[i] = node->points[i].index;
}
computeNodeStatistics(node, indices);
if (indices.size()>=size_t(branching_)) {
computeClustering(node, &indices[0], indices.size(), branching_);
}
}
else {
// find the closest child
int closest = 0;
DistanceType dist = distance_(node->childs[closest]->pivot, point, veclen_);
for (size_t i=1;i<size_t(branching_);++i) {
DistanceType crt_dist = distance_(node->childs[i]->pivot, point, veclen_);
if (crt_dist<dist) {
dist = crt_dist;
closest = i;
}
}
addPointToTree(node->childs[closest], index, dist);
}
}
void swap(KMeansIndex& other)
{
std::swap(branching_, other.branching_);
std::swap(iterations_, other.iterations_);
std::swap(centers_init_, other.centers_init_);
std::swap(cb_index_, other.cb_index_);
std::swap(root_, other.root_);
std::swap(pool_, other.pool_);
std::swap(memoryCounter_, other.memoryCounter_);
std::swap(chooseCenters_, other.chooseCenters_);
}
private:
/** The branching factor used in the hierarchical k-means clustering */
int branching_;
/** Maximum number of iterations to use when performing k-means clustering */
int iterations_;
/** Algorithm for choosing the cluster centers */
flann_centers_init_t centers_init_;
/**
* Cluster border index. This is used in the tree search phase when determining
* the closest cluster to explore next. A zero value takes into account only
* the cluster centres, a value greater then zero also take into account the size
* of the cluster.
*/
float cb_index_;
/**
* The root node in the tree.
*/
NodePtr root_;
/**
* Pooled memory allocator.
*/
PooledAllocator pool_;
/**
* Memory occupied by the index.
*/
int memoryCounter_;
/**
* Algorithm used to choose initial centers
*/
CenterChooser<Distance>* chooseCenters_;
USING_BASECLASS_SYMBOLS
};
}
#endif //FLANN_KMEANS_INDEX_H_