You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
699 lines
21 KiB
699 lines
21 KiB
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef FLANN_KDTREE_SINGLE_INDEX_H_
|
|
#define FLANN_KDTREE_SINGLE_INDEX_H_
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
|
|
#include "FLANN/general.h"
|
|
#include "FLANN/algorithms/nn_index.h"
|
|
#include "FLANN/util/matrix.h"
|
|
#include "FLANN/util/result_set.h"
|
|
#include "FLANN/util/heap.h"
|
|
#include "FLANN/util/allocator.h"
|
|
#include "FLANN/util/random.h"
|
|
#include "FLANN/util/saving.h"
|
|
|
|
namespace flann
|
|
{
|
|
|
|
struct KDTreeSingleIndexParams : public IndexParams
|
|
{
|
|
KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true)
|
|
{
|
|
(*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
|
|
(*this)["leaf_max_size"] = leaf_max_size;
|
|
(*this)["reorder"] = reorder;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Single kd-tree index
|
|
*
|
|
* Contains the k-d trees and other information for indexing a set of points
|
|
* for nearest-neighbor matching.
|
|
*/
|
|
template <typename Distance>
|
|
class KDTreeSingleIndex : public NNIndex<Distance>
|
|
{
|
|
public:
|
|
typedef typename Distance::ElementType ElementType;
|
|
typedef typename Distance::ResultType DistanceType;
|
|
|
|
typedef NNIndex<Distance> BaseClass;
|
|
|
|
typedef bool needs_kdtree_distance;
|
|
|
|
/**
|
|
* KDTree constructor
|
|
*
|
|
* Params:
|
|
* params = parameters passed to the kdtree algorithm
|
|
*/
|
|
KDTreeSingleIndex(const IndexParams& params = KDTreeSingleIndexParams(), Distance d = Distance() ) :
|
|
BaseClass(params, d), root_node_(NULL)
|
|
{
|
|
leaf_max_size_ = get_param(params,"leaf_max_size",10);
|
|
reorder_ = get_param(params, "reorder", true);
|
|
}
|
|
|
|
/**
|
|
* KDTree constructor
|
|
*
|
|
* Params:
|
|
* inputData = dataset with the input features
|
|
* params = parameters passed to the kdtree algorithm
|
|
*/
|
|
KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
|
|
Distance d = Distance() ) : BaseClass(params, d), root_node_(NULL)
|
|
{
|
|
leaf_max_size_ = get_param(params,"leaf_max_size",10);
|
|
reorder_ = get_param(params, "reorder", true);
|
|
|
|
setDataset(inputData);
|
|
}
|
|
|
|
|
|
KDTreeSingleIndex(const KDTreeSingleIndex& other) : BaseClass(other),
|
|
leaf_max_size_(other.leaf_max_size_),
|
|
reorder_(other.reorder_),
|
|
vind_(other.vind_),
|
|
root_bbox_(other.root_bbox_)
|
|
{
|
|
if (reorder_) {
|
|
data_ = flann::Matrix<ElementType>(new ElementType[size_*veclen_], size_, veclen_);
|
|
std::copy(other.data_[0], other.data_[0]+size_*veclen_, data_[0]);
|
|
}
|
|
copyTree(root_node_, other.root_node_);
|
|
}
|
|
|
|
KDTreeSingleIndex& operator=(KDTreeSingleIndex other)
|
|
{
|
|
this->swap(other);
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Standard destructor
|
|
*/
|
|
virtual ~KDTreeSingleIndex()
|
|
{
|
|
freeIndex();
|
|
}
|
|
|
|
BaseClass* clone() const
|
|
{
|
|
return new KDTreeSingleIndex(*this);
|
|
}
|
|
|
|
using BaseClass::buildIndex;
|
|
|
|
void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
|
|
{
|
|
assert(points.cols==veclen_);
|
|
extendDataset(points);
|
|
buildIndex();
|
|
}
|
|
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return FLANN_INDEX_KDTREE_SINGLE;
|
|
}
|
|
|
|
|
|
template<typename Archive>
|
|
void serialize(Archive& ar)
|
|
{
|
|
ar.setObject(this);
|
|
|
|
if (reorder_) index_params_["save_dataset"] = false;
|
|
|
|
ar & *static_cast<NNIndex<Distance>*>(this);
|
|
|
|
ar & reorder_;
|
|
ar & leaf_max_size_;
|
|
ar & root_bbox_;
|
|
ar & vind_;
|
|
|
|
if (reorder_) {
|
|
ar & data_;
|
|
}
|
|
|
|
if (Archive::is_loading::value) {
|
|
root_node_ = new(pool_) Node();
|
|
}
|
|
|
|
ar & *root_node_;
|
|
|
|
if (Archive::is_loading::value) {
|
|
index_params_["algorithm"] = getType();
|
|
index_params_["leaf_max_size"] = leaf_max_size_;
|
|
index_params_["reorder"] = reorder_;
|
|
}
|
|
}
|
|
|
|
|
|
void saveIndex(FILE* stream)
|
|
{
|
|
serialization::SaveArchive sa(stream);
|
|
sa & *this;
|
|
}
|
|
|
|
|
|
void loadIndex(FILE* stream)
|
|
{
|
|
freeIndex();
|
|
serialization::LoadArchive la(stream);
|
|
la & *this;
|
|
}
|
|
|
|
/**
|
|
* Computes the inde memory usage
|
|
* Returns: memory used by the index
|
|
*/
|
|
int usedMemory() const
|
|
{
|
|
return pool_.usedMemory+pool_.wastedMemory+size_*sizeof(int); // pool memory and vind array memory
|
|
}
|
|
|
|
/**
|
|
* Find set of nearest neighbors to vec. Their indices are stored inside
|
|
* the result object.
|
|
*
|
|
* Params:
|
|
* result = the result object in which the indices of the nearest-neighbors are stored
|
|
* vec = the vector for which to search the nearest neighbors
|
|
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
|
|
*/
|
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) const
|
|
{
|
|
float epsError = 1+searchParams.eps;
|
|
|
|
std::vector<DistanceType> dists(veclen_,0);
|
|
DistanceType distsq = computeInitialDistances(vec, dists);
|
|
if (removed_) {
|
|
searchLevel<true>(result, vec, root_node_, distsq, dists, epsError);
|
|
}
|
|
else {
|
|
searchLevel<false>(result, vec, root_node_, distsq, dists, epsError);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
|
|
/**
|
|
* Builds the index
|
|
*/
|
|
void buildIndexImpl()
|
|
{
|
|
// Create a permutable array of indices to the input vectors.
|
|
vind_.resize(size_);
|
|
for (size_t i = 0; i < size_; i++) {
|
|
vind_[i] = i;
|
|
}
|
|
|
|
computeBoundingBox(root_bbox_);
|
|
root_node_ = divideTree(0, size_, root_bbox_ ); // construct the tree
|
|
|
|
if (reorder_) {
|
|
data_ = flann::Matrix<ElementType>(new ElementType[size_*veclen_], size_, veclen_);
|
|
for (size_t i=0; i<size_; ++i) {
|
|
std::copy(points_[vind_[i]], points_[vind_[i]]+veclen_, data_[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
|
|
/*--------------------- Internal Data Structures --------------------------*/
|
|
struct Node
|
|
{
|
|
/**
|
|
* Indices of points in leaf node
|
|
*/
|
|
int left, right;
|
|
/**
|
|
* Dimension used for subdivision.
|
|
*/
|
|
int divfeat;
|
|
/**
|
|
* The values used for subdivision.
|
|
*/
|
|
DistanceType divlow, divhigh;
|
|
/**
|
|
* The child nodes.
|
|
*/
|
|
Node* child1, * child2;
|
|
|
|
~Node()
|
|
{
|
|
if (child1) child1->~Node();
|
|
if (child2) child2->~Node();
|
|
}
|
|
|
|
private:
|
|
template<typename Archive>
|
|
void serialize(Archive& ar)
|
|
{
|
|
typedef KDTreeSingleIndex<Distance> Index;
|
|
Index* obj = static_cast<Index*>(ar.getObject());
|
|
|
|
ar & left;
|
|
ar & right;
|
|
ar & divfeat;
|
|
ar & divlow;
|
|
ar & divhigh;
|
|
|
|
bool leaf_node = false;
|
|
if (Archive::is_saving::value) {
|
|
leaf_node = ((child1==NULL) && (child2==NULL));
|
|
}
|
|
ar & leaf_node;
|
|
|
|
if (!leaf_node) {
|
|
if (Archive::is_loading::value) {
|
|
child1 = new(obj->pool_) Node();
|
|
child2 = new(obj->pool_) Node();
|
|
}
|
|
ar & *child1;
|
|
ar & *child2;
|
|
}
|
|
}
|
|
friend struct serialization::access;
|
|
};
|
|
typedef Node* NodePtr;
|
|
|
|
|
|
struct Interval
|
|
{
|
|
DistanceType low, high;
|
|
|
|
private:
|
|
template <typename Archive>
|
|
void serialize(Archive& ar)
|
|
{
|
|
ar & low;
|
|
ar & high;
|
|
}
|
|
friend struct serialization::access;
|
|
};
|
|
|
|
typedef std::vector<Interval> BoundingBox;
|
|
|
|
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
|
|
typedef BranchSt* Branch;
|
|
|
|
|
|
|
|
void freeIndex()
|
|
{
|
|
if (data_.ptr()) {
|
|
delete[] data_.ptr();
|
|
data_ = flann::Matrix<ElementType>();
|
|
}
|
|
if (root_node_) root_node_->~Node();
|
|
pool_.free();
|
|
}
|
|
|
|
void copyTree(NodePtr& dst, const NodePtr& src)
|
|
{
|
|
dst = new(pool_) Node();
|
|
*dst = *src;
|
|
if (src->child1!=NULL && src->child2!=NULL) {
|
|
copyTree(dst->child1, src->child1);
|
|
copyTree(dst->child2, src->child2);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void computeBoundingBox(BoundingBox& bbox)
|
|
{
|
|
bbox.resize(veclen_);
|
|
for (size_t i=0; i<veclen_; ++i) {
|
|
bbox[i].low = (DistanceType)points_[0][i];
|
|
bbox[i].high = (DistanceType)points_[0][i];
|
|
}
|
|
for (size_t k=1; k<size_; ++k) {
|
|
for (size_t i=0; i<veclen_; ++i) {
|
|
if (points_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)points_[k][i];
|
|
if (points_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)points_[k][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Create a tree node that subdivides the list of vecs from vind[first]
|
|
* to vind[last]. The routine is called recursively on each sublist.
|
|
* Place a pointer to this new tree node in the location pTree.
|
|
*
|
|
* Params: pTree = the new node to create
|
|
* first = index of the first vector
|
|
* last = index of the last vector
|
|
*/
|
|
NodePtr divideTree(int left, int right, BoundingBox& bbox)
|
|
{
|
|
NodePtr node = new (pool_) Node(); // allocate memory
|
|
|
|
/* If too few exemplars remain, then make this a leaf node. */
|
|
if ( (right-left) <= leaf_max_size_) {
|
|
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
|
|
node->left = left;
|
|
node->right = right;
|
|
|
|
// compute bounding-box of leaf points
|
|
for (size_t i=0; i<veclen_; ++i) {
|
|
bbox[i].low = (DistanceType)points_[vind_[left]][i];
|
|
bbox[i].high = (DistanceType)points_[vind_[left]][i];
|
|
}
|
|
for (int k=left+1; k<right; ++k) {
|
|
for (size_t i=0; i<veclen_; ++i) {
|
|
if (bbox[i].low>points_[vind_[k]][i]) bbox[i].low=(DistanceType)points_[vind_[k]][i];
|
|
if (bbox[i].high<points_[vind_[k]][i]) bbox[i].high=(DistanceType)points_[vind_[k]][i];
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
int idx;
|
|
int cutfeat;
|
|
DistanceType cutval;
|
|
middleSplit(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
|
|
|
|
node->divfeat = cutfeat;
|
|
|
|
BoundingBox left_bbox(bbox);
|
|
left_bbox[cutfeat].high = cutval;
|
|
node->child1 = divideTree(left, left+idx, left_bbox);
|
|
|
|
BoundingBox right_bbox(bbox);
|
|
right_bbox[cutfeat].low = cutval;
|
|
node->child2 = divideTree(left+idx, right, right_bbox);
|
|
|
|
node->divlow = left_bbox[cutfeat].high;
|
|
node->divhigh = right_bbox[cutfeat].low;
|
|
|
|
for (size_t i=0; i<veclen_; ++i) {
|
|
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
|
|
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
|
|
}
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
|
|
{
|
|
min_elem = points_[ind[0]][dim];
|
|
max_elem = points_[ind[0]][dim];
|
|
for (int i=1; i<count; ++i) {
|
|
ElementType val = points_[ind[i]][dim];
|
|
if (val<min_elem) min_elem = val;
|
|
if (val>max_elem) max_elem = val;
|
|
}
|
|
}
|
|
|
|
void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
|
|
{
|
|
// find the largest span from the approximate bounding box
|
|
ElementType max_span = bbox[0].high-bbox[0].low;
|
|
cutfeat = 0;
|
|
cutval = (bbox[0].high+bbox[0].low)/2;
|
|
for (size_t i=1; i<veclen_; ++i) {
|
|
ElementType span = bbox[i].high-bbox[i].low;
|
|
if (span>max_span) {
|
|
max_span = span;
|
|
cutfeat = i;
|
|
cutval = (bbox[i].high+bbox[i].low)/2;
|
|
}
|
|
}
|
|
|
|
// compute exact span on the found dimension
|
|
ElementType min_elem, max_elem;
|
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
|
cutval = (min_elem+max_elem)/2;
|
|
max_span = max_elem - min_elem;
|
|
|
|
// check if a dimension of a largest span exists
|
|
size_t k = cutfeat;
|
|
for (size_t i=0; i<veclen_; ++i) {
|
|
if (i==k) continue;
|
|
ElementType span = bbox[i].high-bbox[i].low;
|
|
if (span>max_span) {
|
|
computeMinMax(ind, count, i, min_elem, max_elem);
|
|
span = max_elem - min_elem;
|
|
if (span>max_span) {
|
|
max_span = span;
|
|
cutfeat = i;
|
|
cutval = (min_elem+max_elem)/2;
|
|
}
|
|
}
|
|
}
|
|
int lim1, lim2;
|
|
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
|
|
|
|
if (lim1>count/2) index = lim1;
|
|
else if (lim2<count/2) index = lim2;
|
|
else index = count/2;
|
|
|
|
assert(index > 0 && index < count);
|
|
}
|
|
|
|
|
|
void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
|
|
{
|
|
const float eps_val=0.00001f;
|
|
DistanceType max_span = bbox[0].high-bbox[0].low;
|
|
for (size_t i=1; i<veclen_; ++i) {
|
|
DistanceType span = bbox[i].high-bbox[i].low;
|
|
if (span>max_span) {
|
|
max_span = span;
|
|
}
|
|
}
|
|
DistanceType max_spread = -1;
|
|
cutfeat = 0;
|
|
for (size_t i=0; i<veclen_; ++i) {
|
|
DistanceType span = bbox[i].high-bbox[i].low;
|
|
if (span>(DistanceType)((1-eps_val)*max_span)) {
|
|
ElementType min_elem, max_elem;
|
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
|
DistanceType spread = (DistanceType)(max_elem-min_elem);
|
|
if (spread>max_spread) {
|
|
cutfeat = i;
|
|
max_spread = spread;
|
|
}
|
|
}
|
|
}
|
|
// split in the middle
|
|
DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
|
|
ElementType min_elem, max_elem;
|
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
|
|
|
if (split_val<min_elem) cutval = (DistanceType)min_elem;
|
|
else if (split_val>max_elem) cutval = (DistanceType)max_elem;
|
|
else cutval = split_val;
|
|
|
|
int lim1, lim2;
|
|
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
|
|
|
|
if (lim1>count/2) index = lim1;
|
|
else if (lim2<count/2) index = lim2;
|
|
else index = count/2;
|
|
|
|
assert(index > 0 && index < count);
|
|
}
|
|
|
|
|
|
/**
|
|
* Subdivide the list of points by a plane perpendicular on axe corresponding
|
|
* to the 'cutfeat' dimension at 'cutval' position.
|
|
*
|
|
* On return:
|
|
* dataset[ind[0..lim1-1]][cutfeat]<cutval
|
|
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
|
|
* dataset[ind[lim2..count]][cutfeat]>cutval
|
|
*/
|
|
void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
|
|
{
|
|
int left = 0;
|
|
int right = count-1;
|
|
for (;; ) {
|
|
while (left<=right && points_[ind[left]][cutfeat]<cutval) ++left;
|
|
while (left<=right && points_[ind[right]][cutfeat]>=cutval) --right;
|
|
if (left>right) break;
|
|
std::swap(ind[left], ind[right]); ++left; --right;
|
|
}
|
|
|
|
lim1 = left;
|
|
right = count-1;
|
|
for (;; ) {
|
|
while (left<=right && points_[ind[left]][cutfeat]<=cutval) ++left;
|
|
while (left<=right && points_[ind[right]][cutfeat]>cutval) --right;
|
|
if (left>right) break;
|
|
std::swap(ind[left], ind[right]); ++left; --right;
|
|
}
|
|
lim2 = left;
|
|
}
|
|
|
|
DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists) const
|
|
{
|
|
DistanceType distsq = 0.0;
|
|
|
|
for (size_t i = 0; i < veclen_; ++i) {
|
|
if (vec[i] < root_bbox_[i].low) {
|
|
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, i);
|
|
distsq += dists[i];
|
|
}
|
|
if (vec[i] > root_bbox_[i].high) {
|
|
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, i);
|
|
distsq += dists[i];
|
|
}
|
|
}
|
|
|
|
return distsq;
|
|
}
|
|
|
|
/**
|
|
* Performs an exact search in the tree starting from a node.
|
|
*/
|
|
template <bool with_removed>
|
|
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
|
|
std::vector<DistanceType>& dists, const float epsError) const
|
|
{
|
|
/* If this is a leaf node, then do check and return. */
|
|
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
|
|
DistanceType worst_dist = result_set.worstDist();
|
|
for (int i=node->left; i<node->right; ++i) {
|
|
if (with_removed) {
|
|
if (removed_points_.test(vind_[i])) continue;
|
|
}
|
|
ElementType* point = reorder_ ? data_[i] : points_[vind_[i]];
|
|
DistanceType dist = distance_(vec, point, veclen_, worst_dist);
|
|
if (dist<worst_dist) {
|
|
result_set.addPoint(dist,vind_[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Which child branch should be taken first? */
|
|
int idx = node->divfeat;
|
|
ElementType val = vec[idx];
|
|
DistanceType diff1 = val - node->divlow;
|
|
DistanceType diff2 = val - node->divhigh;
|
|
|
|
NodePtr bestChild;
|
|
NodePtr otherChild;
|
|
DistanceType cut_dist;
|
|
if ((diff1+diff2)<0) {
|
|
bestChild = node->child1;
|
|
otherChild = node->child2;
|
|
cut_dist = distance_.accum_dist(val, node->divhigh, idx);
|
|
}
|
|
else {
|
|
bestChild = node->child2;
|
|
otherChild = node->child1;
|
|
cut_dist = distance_.accum_dist( val, node->divlow, idx);
|
|
}
|
|
|
|
/* Call recursively to search next level down. */
|
|
searchLevel<with_removed>(result_set, vec, bestChild, mindistsq, dists, epsError);
|
|
|
|
DistanceType dst = dists[idx];
|
|
mindistsq = mindistsq + cut_dist - dst;
|
|
dists[idx] = cut_dist;
|
|
if (mindistsq*epsError<=result_set.worstDist()) {
|
|
searchLevel<with_removed>(result_set, vec, otherChild, mindistsq, dists, epsError);
|
|
}
|
|
dists[idx] = dst;
|
|
}
|
|
|
|
|
|
void swap(KDTreeSingleIndex& other)
|
|
{
|
|
BaseClass::swap(other);
|
|
std::swap(leaf_max_size_, other.leaf_max_size_);
|
|
std::swap(reorder_, other.reorder_);
|
|
std::swap(vind_, other.vind_);
|
|
std::swap(data_, other.data_);
|
|
std::swap(root_node_, other.root_node_);
|
|
std::swap(root_bbox_, other.root_bbox_);
|
|
std::swap(pool_, other.pool_);
|
|
}
|
|
|
|
private:
|
|
|
|
|
|
|
|
int leaf_max_size_;
|
|
|
|
|
|
bool reorder_;
|
|
|
|
/**
|
|
* Array of indices to vectors in the dataset.
|
|
*/
|
|
std::vector<int> vind_;
|
|
|
|
Matrix<ElementType> data_;
|
|
|
|
/**
|
|
* Array of k-d trees used to find neighbours.
|
|
*/
|
|
NodePtr root_node_;
|
|
|
|
/**
|
|
* Root bounding box
|
|
*/
|
|
BoundingBox root_bbox_;
|
|
|
|
/**
|
|
* Pooled memory allocator.
|
|
*
|
|
* Using a pooled memory allocator is more efficient
|
|
* than allocating memory directly when there is a large
|
|
* number small of memory allocations.
|
|
*/
|
|
PooledAllocator pool_;
|
|
|
|
USING_BASECLASS_SYMBOLS
|
|
|
|
}; // class KDTreeSingleIndex
|
|
|
|
}
|
|
|
|
#endif //FLANN_KDTREE_SINGLE_INDEX_H_
|