You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
436 lines
13 KiB
436 lines
13 KiB
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef FLANN_HPP_
|
|
#define FLANN_HPP_
|
|
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
|
|
#include "FLANN/general.h"
|
|
#include "FLANN/util/matrix.h"
|
|
#include "FLANN/util/params.h"
|
|
#include "FLANN/util/saving.h"
|
|
|
|
#include "FLANN/algorithms/all_indices.h"
|
|
|
|
namespace flann
|
|
{
|
|
|
|
/**
|
|
* Sets the log level used for all flann functions
|
|
* @param level Verbosity level
|
|
*/
|
|
inline void log_verbosity(int level)
|
|
{
|
|
if (level >= 0) {
|
|
Logger::setLevel(level);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* (Deprecated) Index parameters for creating a saved index.
|
|
*/
|
|
struct SavedIndexParams : public IndexParams
|
|
{
|
|
SavedIndexParams(std::string filename)
|
|
{
|
|
(*this)["algorithm"] = FLANN_INDEX_SAVED;
|
|
(*this)["filename"] = filename;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template<typename Distance>
|
|
class Index
|
|
{
|
|
public:
|
|
typedef typename Distance::ElementType ElementType;
|
|
typedef typename Distance::ResultType DistanceType;
|
|
typedef NNIndex<Distance> IndexType;
|
|
|
|
Index(const IndexParams& params, Distance distance = Distance() )
|
|
: index_params_(params)
|
|
{
|
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
|
|
loaded_ = false;
|
|
|
|
Matrix<ElementType> features;
|
|
if (index_type == FLANN_INDEX_SAVED) {
|
|
nnIndex_ = load_saved_index(features, get_param<std::string>(params,"filename"), distance);
|
|
loaded_ = true;
|
|
}
|
|
else {
|
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
|
|
nnIndex_ = create_index_by_type<Distance>(index_type, features, params, distance);
|
|
}
|
|
}
|
|
|
|
|
|
Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
|
|
: index_params_(params)
|
|
{
|
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
|
|
loaded_ = false;
|
|
|
|
if (index_type == FLANN_INDEX_SAVED) {
|
|
nnIndex_ = load_saved_index(features, get_param<std::string>(params,"filename"), distance);
|
|
loaded_ = true;
|
|
}
|
|
else {
|
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
|
|
nnIndex_ = create_index_by_type<Distance>(index_type, features, params, distance);
|
|
}
|
|
}
|
|
|
|
|
|
Index(const Index& other) : loaded_(other.loaded_), index_params_(other.index_params_)
|
|
{
|
|
nnIndex_ = other.nnIndex_->clone();
|
|
}
|
|
|
|
Index& operator=(Index other)
|
|
{
|
|
this->swap(other);
|
|
return *this;
|
|
}
|
|
|
|
virtual ~Index()
|
|
{
|
|
delete nnIndex_;
|
|
}
|
|
|
|
/**
|
|
* Builds the index.
|
|
*/
|
|
void buildIndex()
|
|
{
|
|
if (!loaded_) {
|
|
nnIndex_->buildIndex();
|
|
}
|
|
}
|
|
|
|
void buildIndex(const Matrix<ElementType>& points)
|
|
{
|
|
nnIndex_->buildIndex(points);
|
|
}
|
|
|
|
void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
|
|
{
|
|
nnIndex_->addPoints(points, rebuild_threshold);
|
|
}
|
|
|
|
/**
|
|
* Remove point from the index
|
|
* @param index Index of point to be removed
|
|
*/
|
|
void removePoint(size_t point_id)
|
|
{
|
|
nnIndex_->removePoint(point_id);
|
|
}
|
|
|
|
/**
|
|
* Returns pointer to a data point with the specified id.
|
|
* @param point_id the id of point to retrieve
|
|
* @return
|
|
*/
|
|
ElementType* getPoint(size_t point_id)
|
|
{
|
|
return nnIndex_->getPoint(point_id);
|
|
}
|
|
|
|
/**
|
|
* Save index to file
|
|
* @param filename
|
|
*/
|
|
void save(std::string filename)
|
|
{
|
|
FILE* fout = fopen(filename.c_str(), "wb");
|
|
if (fout == NULL) {
|
|
throw FLANNException("Cannot open file");
|
|
}
|
|
nnIndex_->saveIndex(fout);
|
|
fclose(fout);
|
|
}
|
|
|
|
/**
|
|
* \returns number of features in this index.
|
|
*/
|
|
size_t veclen() const
|
|
{
|
|
return nnIndex_->veclen();
|
|
}
|
|
|
|
/**
|
|
* \returns The dimensionality of the features in this index.
|
|
*/
|
|
size_t size() const
|
|
{
|
|
return nnIndex_->size();
|
|
}
|
|
|
|
/**
|
|
* \returns The index type (kdtree, kmeans,...)
|
|
*/
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return nnIndex_->getType();
|
|
}
|
|
|
|
/**
|
|
* \returns The amount of memory (in bytes) used by the index.
|
|
*/
|
|
int usedMemory() const
|
|
{
|
|
return nnIndex_->usedMemory();
|
|
}
|
|
|
|
|
|
/**
|
|
* \returns The index parameters
|
|
*/
|
|
IndexParams getParameters() const
|
|
{
|
|
return nnIndex_->getParameters();
|
|
}
|
|
|
|
/**
|
|
* \brief Perform k-nearest neighbor search
|
|
* \param[in] queries The query points for which to find the nearest neighbors
|
|
* \param[out] indices The indices of the nearest neighbors found
|
|
* \param[out] dists Distances to the nearest neighbors found
|
|
* \param[in] knn Number of nearest neighbors to return
|
|
* \param[in] params Search parameters
|
|
*/
|
|
int knnSearch(const Matrix<ElementType>& queries,
|
|
Matrix<size_t>& indices,
|
|
Matrix<DistanceType>& dists,
|
|
size_t knn,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param queries
|
|
* @param indices
|
|
* @param dists
|
|
* @param knn
|
|
* @param params
|
|
* @return
|
|
*/
|
|
int knnSearch(const Matrix<ElementType>& queries,
|
|
Matrix<int>& indices,
|
|
Matrix<DistanceType>& dists,
|
|
size_t knn,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
|
|
}
|
|
|
|
/**
|
|
* \brief Perform k-nearest neighbor search
|
|
* \param[in] queries The query points for which to find the nearest neighbors
|
|
* \param[out] indices The indices of the nearest neighbors found
|
|
* \param[out] dists Distances to the nearest neighbors found
|
|
* \param[in] knn Number of nearest neighbors to return
|
|
* \param[in] params Search parameters
|
|
*/
|
|
int knnSearch(const Matrix<ElementType>& queries,
|
|
std::vector< std::vector<size_t> >& indices,
|
|
std::vector<std::vector<DistanceType> >& dists,
|
|
size_t knn,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param queries
|
|
* @param indices
|
|
* @param dists
|
|
* @param knn
|
|
* @param params
|
|
* @return
|
|
*/
|
|
int knnSearch(const Matrix<ElementType>& queries,
|
|
std::vector< std::vector<int> >& indices,
|
|
std::vector<std::vector<DistanceType> >& dists,
|
|
size_t knn,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
|
|
}
|
|
|
|
/**
|
|
* \brief Perform radius search
|
|
* \param[in] queries The query points
|
|
* \param[out] indices The indices of the neighbors found within the given radius
|
|
* \param[out] dists The distances to the nearest neighbors found
|
|
* \param[in] radius The radius used for search
|
|
* \param[in] params Search parameters
|
|
* \returns Number of neighbors found
|
|
*/
|
|
int radiusSearch(const Matrix<ElementType>& queries,
|
|
Matrix<size_t>& indices,
|
|
Matrix<DistanceType>& dists,
|
|
float radius,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param queries
|
|
* @param indices
|
|
* @param dists
|
|
* @param radius
|
|
* @param params
|
|
* @return
|
|
*/
|
|
int radiusSearch(const Matrix<ElementType>& queries,
|
|
Matrix<int>& indices,
|
|
Matrix<DistanceType>& dists,
|
|
float radius,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
|
|
}
|
|
|
|
/**
|
|
* \brief Perform radius search
|
|
* \param[in] queries The query points
|
|
* \param[out] indices The indices of the neighbors found within the given radius
|
|
* \param[out] dists The distances to the nearest neighbors found
|
|
* \param[in] radius The radius used for search
|
|
* \param[in] params Search parameters
|
|
* \returns Number of neighbors found
|
|
*/
|
|
int radiusSearch(const Matrix<ElementType>& queries,
|
|
std::vector< std::vector<size_t> >& indices,
|
|
std::vector<std::vector<DistanceType> >& dists,
|
|
float radius,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param queries
|
|
* @param indices
|
|
* @param dists
|
|
* @param radius
|
|
* @param params
|
|
* @return
|
|
*/
|
|
int radiusSearch(const Matrix<ElementType>& queries,
|
|
std::vector< std::vector<int> >& indices,
|
|
std::vector<std::vector<DistanceType> >& dists,
|
|
float radius,
|
|
const SearchParams& params) const
|
|
{
|
|
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
|
|
}
|
|
|
|
private:
|
|
IndexType* load_saved_index(const Matrix<ElementType>& dataset, const std::string& filename, Distance distance)
|
|
{
|
|
FILE* fin = fopen(filename.c_str(), "rb");
|
|
if (fin == NULL) {
|
|
return NULL;
|
|
}
|
|
IndexHeader header = load_header(fin);
|
|
if (header.h.data_type != flann_datatype_value<ElementType>::value) {
|
|
throw FLANNException("Datatype of saved index is different than of the one to be loaded.");
|
|
}
|
|
|
|
IndexParams params;
|
|
params["algorithm"] = header.h.index_type;
|
|
IndexType* nnIndex = create_index_by_type<Distance>(header.h.index_type, dataset, params, distance);
|
|
rewind(fin);
|
|
nnIndex->loadIndex(fin);
|
|
fclose(fin);
|
|
|
|
return nnIndex;
|
|
}
|
|
|
|
void swap( Index& other)
|
|
{
|
|
std::swap(nnIndex_, other.nnIndex_);
|
|
std::swap(loaded_, other.loaded_);
|
|
std::swap(index_params_, other.index_params_);
|
|
}
|
|
|
|
private:
|
|
/** Pointer to actual index class */
|
|
IndexType* nnIndex_;
|
|
/** Indices if the index was loaded from a file */
|
|
bool loaded_;
|
|
/** Parameters passed to the index */
|
|
IndexParams index_params_;
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
|
|
* the clustering tree to return a flat clustering.
|
|
* @param[in] points Points to be clustered
|
|
* @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
|
|
* number of clusters requested.
|
|
* @param params Clustering parameters (The same as for flann::KMeansIndex)
|
|
* @param d Distance to be used for clustering (eg: flann::L2)
|
|
* @return number of clusters computed (can be different than clusters.rows and is the highest number
|
|
* of the form (branching-1)*K+1 smaller than clusters.rows).
|
|
*/
|
|
template <typename Distance>
|
|
int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
|
|
const KMeansIndexParams& params, Distance d = Distance())
|
|
{
|
|
KMeansIndex<Distance> kmeans(points, params, d);
|
|
kmeans.buildIndex();
|
|
|
|
int clusterNum = kmeans.getClusterCenters(centers);
|
|
return clusterNum;
|
|
}
|
|
|
|
}
|
|
#endif /* FLANN_HPP_ */
|