You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/colmap-dev/lib/FLANN/flann.hpp

436 lines
13 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_HPP_
#define FLANN_HPP_
#include <vector>
#include <string>
#include <cassert>
#include <cstdio>
#include "FLANN/general.h"
#include "FLANN/util/matrix.h"
#include "FLANN/util/params.h"
#include "FLANN/util/saving.h"
#include "FLANN/algorithms/all_indices.h"
namespace flann
{
/**
* Sets the log level used for all flann functions
* @param level Verbosity level
*/
inline void log_verbosity(int level)
{
if (level >= 0) {
Logger::setLevel(level);
}
}
/**
* (Deprecated) Index parameters for creating a saved index.
*/
struct SavedIndexParams : public IndexParams
{
SavedIndexParams(std::string filename)
{
(*this)["algorithm"] = FLANN_INDEX_SAVED;
(*this)["filename"] = filename;
}
};
template<typename Distance>
class Index
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
typedef NNIndex<Distance> IndexType;
Index(const IndexParams& params, Distance distance = Distance() )
: index_params_(params)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
loaded_ = false;
Matrix<ElementType> features;
if (index_type == FLANN_INDEX_SAVED) {
nnIndex_ = load_saved_index(features, get_param<std::string>(params,"filename"), distance);
loaded_ = true;
}
else {
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
nnIndex_ = create_index_by_type<Distance>(index_type, features, params, distance);
}
}
Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
: index_params_(params)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
loaded_ = false;
if (index_type == FLANN_INDEX_SAVED) {
nnIndex_ = load_saved_index(features, get_param<std::string>(params,"filename"), distance);
loaded_ = true;
}
else {
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
nnIndex_ = create_index_by_type<Distance>(index_type, features, params, distance);
}
}
Index(const Index& other) : loaded_(other.loaded_), index_params_(other.index_params_)
{
nnIndex_ = other.nnIndex_->clone();
}
Index& operator=(Index other)
{
this->swap(other);
return *this;
}
virtual ~Index()
{
delete nnIndex_;
}
/**
* Builds the index.
*/
void buildIndex()
{
if (!loaded_) {
nnIndex_->buildIndex();
}
}
void buildIndex(const Matrix<ElementType>& points)
{
nnIndex_->buildIndex(points);
}
void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
{
nnIndex_->addPoints(points, rebuild_threshold);
}
/**
* Remove point from the index
* @param index Index of point to be removed
*/
void removePoint(size_t point_id)
{
nnIndex_->removePoint(point_id);
}
/**
* Returns pointer to a data point with the specified id.
* @param point_id the id of point to retrieve
* @return
*/
ElementType* getPoint(size_t point_id)
{
return nnIndex_->getPoint(point_id);
}
/**
* Save index to file
* @param filename
*/
void save(std::string filename)
{
FILE* fout = fopen(filename.c_str(), "wb");
if (fout == NULL) {
throw FLANNException("Cannot open file");
}
nnIndex_->saveIndex(fout);
fclose(fout);
}
/**
* \returns number of features in this index.
*/
size_t veclen() const
{
return nnIndex_->veclen();
}
/**
* \returns The dimensionality of the features in this index.
*/
size_t size() const
{
return nnIndex_->size();
}
/**
* \returns The index type (kdtree, kmeans,...)
*/
flann_algorithm_t getType() const
{
return nnIndex_->getType();
}
/**
* \returns The amount of memory (in bytes) used by the index.
*/
int usedMemory() const
{
return nnIndex_->usedMemory();
}
/**
* \returns The index parameters
*/
IndexParams getParameters() const
{
return nnIndex_->getParameters();
}
/**
* \brief Perform k-nearest neighbor search
* \param[in] queries The query points for which to find the nearest neighbors
* \param[out] indices The indices of the nearest neighbors found
* \param[out] dists Distances to the nearest neighbors found
* \param[in] knn Number of nearest neighbors to return
* \param[in] params Search parameters
*/
int knnSearch(const Matrix<ElementType>& queries,
Matrix<size_t>& indices,
Matrix<DistanceType>& dists,
size_t knn,
const SearchParams& params) const
{
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
}
/**
*
* @param queries
* @param indices
* @param dists
* @param knn
* @param params
* @return
*/
int knnSearch(const Matrix<ElementType>& queries,
Matrix<int>& indices,
Matrix<DistanceType>& dists,
size_t knn,
const SearchParams& params) const
{
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
}
/**
* \brief Perform k-nearest neighbor search
* \param[in] queries The query points for which to find the nearest neighbors
* \param[out] indices The indices of the nearest neighbors found
* \param[out] dists Distances to the nearest neighbors found
* \param[in] knn Number of nearest neighbors to return
* \param[in] params Search parameters
*/
int knnSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<size_t> >& indices,
std::vector<std::vector<DistanceType> >& dists,
size_t knn,
const SearchParams& params) const
{
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
}
/**
*
* @param queries
* @param indices
* @param dists
* @param knn
* @param params
* @return
*/
int knnSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<int> >& indices,
std::vector<std::vector<DistanceType> >& dists,
size_t knn,
const SearchParams& params) const
{
return nnIndex_->knnSearch(queries, indices, dists, knn, params);
}
/**
* \brief Perform radius search
* \param[in] queries The query points
* \param[out] indices The indices of the neighbors found within the given radius
* \param[out] dists The distances to the nearest neighbors found
* \param[in] radius The radius used for search
* \param[in] params Search parameters
* \returns Number of neighbors found
*/
int radiusSearch(const Matrix<ElementType>& queries,
Matrix<size_t>& indices,
Matrix<DistanceType>& dists,
float radius,
const SearchParams& params) const
{
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
}
/**
*
* @param queries
* @param indices
* @param dists
* @param radius
* @param params
* @return
*/
int radiusSearch(const Matrix<ElementType>& queries,
Matrix<int>& indices,
Matrix<DistanceType>& dists,
float radius,
const SearchParams& params) const
{
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
}
/**
* \brief Perform radius search
* \param[in] queries The query points
* \param[out] indices The indices of the neighbors found within the given radius
* \param[out] dists The distances to the nearest neighbors found
* \param[in] radius The radius used for search
* \param[in] params Search parameters
* \returns Number of neighbors found
*/
int radiusSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<size_t> >& indices,
std::vector<std::vector<DistanceType> >& dists,
float radius,
const SearchParams& params) const
{
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
}
/**
*
* @param queries
* @param indices
* @param dists
* @param radius
* @param params
* @return
*/
int radiusSearch(const Matrix<ElementType>& queries,
std::vector< std::vector<int> >& indices,
std::vector<std::vector<DistanceType> >& dists,
float radius,
const SearchParams& params) const
{
return nnIndex_->radiusSearch(queries, indices, dists, radius, params);
}
private:
IndexType* load_saved_index(const Matrix<ElementType>& dataset, const std::string& filename, Distance distance)
{
FILE* fin = fopen(filename.c_str(), "rb");
if (fin == NULL) {
return NULL;
}
IndexHeader header = load_header(fin);
if (header.h.data_type != flann_datatype_value<ElementType>::value) {
throw FLANNException("Datatype of saved index is different than of the one to be loaded.");
}
IndexParams params;
params["algorithm"] = header.h.index_type;
IndexType* nnIndex = create_index_by_type<Distance>(header.h.index_type, dataset, params, distance);
rewind(fin);
nnIndex->loadIndex(fin);
fclose(fin);
return nnIndex;
}
void swap( Index& other)
{
std::swap(nnIndex_, other.nnIndex_);
std::swap(loaded_, other.loaded_);
std::swap(index_params_, other.index_params_);
}
private:
/** Pointer to actual index class */
IndexType* nnIndex_;
/** Indices if the index was loaded from a file */
bool loaded_;
/** Parameters passed to the index */
IndexParams index_params_;
};
/**
* Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
* the clustering tree to return a flat clustering.
* @param[in] points Points to be clustered
* @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
* number of clusters requested.
* @param params Clustering parameters (The same as for flann::KMeansIndex)
* @param d Distance to be used for clustering (eg: flann::L2)
* @return number of clusters computed (can be different than clusters.rows and is the highest number
* of the form (branching-1)*K+1 smaller than clusters.rows).
*/
template <typename Distance>
int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
const KMeansIndexParams& params, Distance d = Distance())
{
KMeansIndex<Distance> kmeans(points, params, d);
kmeans.buildIndex();
int clusterNum = kmeans.getClusterCenters(centers);
return clusterNum;
}
}
#endif /* FLANN_HPP_ */