You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
5.1 KiB
145 lines
5.1 KiB
#!/usr/bin/env python
|
|
|
|
# Copyright (c) 2022, ETH Zurich and UNC Chapel Hill.
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# * Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
#
|
|
# * Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
#
|
|
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
|
|
# its contributors may be used to endorse or promote products derived
|
|
# from this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
|
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
# POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
|
|
|
|
import argparse
|
|
import numpy as np
|
|
import os
|
|
import struct
|
|
|
|
|
|
def read_array(path):
|
|
with open(path, "rb") as fid:
|
|
width, height, channels = np.genfromtxt(fid, delimiter="&", max_rows=1,
|
|
usecols=(0, 1, 2), dtype=int)
|
|
fid.seek(0)
|
|
num_delimiter = 0
|
|
byte = fid.read(1)
|
|
while True:
|
|
if byte == b"&":
|
|
num_delimiter += 1
|
|
if num_delimiter >= 3:
|
|
break
|
|
byte = fid.read(1)
|
|
array = np.fromfile(fid, np.float32)
|
|
array = array.reshape((width, height, channels), order="F")
|
|
return np.transpose(array, (1, 0, 2)).squeeze()
|
|
|
|
|
|
def write_array(array, path):
|
|
"""
|
|
see: src/mvs/mat.h
|
|
void Mat<T>::Write(const std::string& path)
|
|
"""
|
|
assert array.dtype == np.float32
|
|
if len(array.shape) == 2:
|
|
height, width = array.shape
|
|
channels = 1
|
|
elif len(array.shape) == 3:
|
|
height, width, channels = array.shape
|
|
else:
|
|
assert False
|
|
|
|
with open(path, "w") as fid:
|
|
fid.write(str(width) + "&" + str(height) + "&" + str(channels) + "&")
|
|
|
|
with open(path, "ab") as fid:
|
|
if len(array.shape) == 2:
|
|
array_trans = np.transpose(array, (1, 0))
|
|
elif len(array.shape) == 3:
|
|
array_trans = np.transpose(array, (1, 0, 2))
|
|
else:
|
|
assert False
|
|
data_1d = array_trans.reshape(-1, order="F")
|
|
data_list = data_1d.tolist()
|
|
endian_character = "<"
|
|
format_char_sequence = "".join(["f"] * len(data_list))
|
|
byte_data = struct.pack(endian_character + format_char_sequence, *data_list)
|
|
fid.write(byte_data)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-d", "--depth_map",
|
|
help="path to depth map", type=str, required=True)
|
|
parser.add_argument("-n", "--normal_map",
|
|
help="path to normal map", type=str, required=True)
|
|
parser.add_argument("--min_depth_percentile",
|
|
help="minimum visualization depth percentile",
|
|
type=float, default=5)
|
|
parser.add_argument("--max_depth_percentile",
|
|
help="maximum visualization depth percentile",
|
|
type=float, default=95)
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
if args.min_depth_percentile > args.max_depth_percentile:
|
|
raise ValueError("min_depth_percentile should be less than or equal "
|
|
"to the max_depth_perceintile.")
|
|
|
|
# Read depth and normal maps corresponding to the same image.
|
|
if not os.path.exists(args.depth_map):
|
|
raise FileNotFoundError("File not found: {}".format(args.depth_map))
|
|
|
|
if not os.path.exists(args.normal_map):
|
|
raise FileNotFoundError("File not found: {}".format(args.normal_map))
|
|
|
|
depth_map = read_array(args.depth_map)
|
|
normal_map = read_array(args.normal_map)
|
|
|
|
min_depth, max_depth = np.percentile(
|
|
depth_map, [args.min_depth_percentile, args.max_depth_percentile])
|
|
depth_map[depth_map < min_depth] = min_depth
|
|
depth_map[depth_map > max_depth] = max_depth
|
|
|
|
import pylab as plt
|
|
|
|
# Visualize the depth map.
|
|
plt.figure()
|
|
plt.imshow(depth_map)
|
|
plt.title("depth map")
|
|
|
|
# Visualize the normal map.
|
|
plt.figure()
|
|
plt.imshow(normal_map)
|
|
plt.title("normal map")
|
|
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|