You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/myTelloProject-master/AlphaPose/dataloader.py

783 lines
28 KiB

import os
import torch
from torch.autograd import Variable
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image, ImageDraw
from AlphaPose.SPPE.src.utils.img import load_image, cropBox, im_to_torch
from AlphaPose.opt import opt
from AlphaPose.yolo.preprocess import prep_image, prep_frame, inp_to_image
from AlphaPose.pPose_nms import pose_nms, write_json
from AlphaPose.matching import candidate_reselect as matching
from AlphaPose.SPPE.src.utils.eval import getPrediction, getMultiPeakPrediction
from AlphaPose.yolo.util import write_results, dynamic_write_results
from AlphaPose.yolo.darknet import Darknet
from tqdm import tqdm
import cv2
import json
import numpy as np
import sys
import time
import torch.multiprocessing as mp
from multiprocessing import Process
from multiprocessing import Queue as pQueue
from threading import Thread
# import the Queue class from Python 3
if sys.version_info >= (3, 0):
from queue import Queue, LifoQueue
# otherwise, import the Queue class for Python 2.7
else:
from Queue import Queue, LifoQueue
if opt.vis_fast:
from fn import vis_frame_fast as vis_frame
else:
from AlphaPose.fn import vis_frame
class Image_loader(data.Dataset):
def __init__(self, im_names, format='yolo'):
super(Image_loader, self).__init__()
self.img_dir = opt.inputpath
self.imglist = im_names
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
self.format = format
def getitem_ssd(self, index):
im_name = self.imglist[index].rstrip('\n').rstrip('\r')
im_name = os.path.join(self.img_dir, im_name)
im = Image.open(im_name)
inp = load_image(im_name)
if im.mode == 'L':
im = im.convert('RGB')
ow = oh = 512
im = im.resize((ow, oh))
im = self.transform(im)
return im, inp, im_name
def getitem_yolo(self, index):
inp_dim = int(opt.inp_dim)
im_name = self.imglist[index].rstrip('\n').rstrip('\r')
im_name = os.path.join(self.img_dir, im_name)
im, orig_img, im_dim = prep_image(im_name, inp_dim)
#im_dim = torch.FloatTensor([im_dim]).repeat(1, 2)
inp = load_image(im_name)
return im, inp, orig_img, im_name, im_dim
def __getitem__(self, index):
if self.format == 'ssd':
return self.getitem_ssd(index)
elif self.format == 'yolo':
return self.getitem_yolo(index)
else:
raise NotImplementedError
def __len__(self):
return len(self.imglist)
class ImageLoader:
def __init__(self, im_names, batchSize=1, format='yolo', queueSize=50):
self.img_dir = opt.inputpath
self.imglist = im_names
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
self.format = format
self.batchSize = batchSize
self.datalen = len(self.imglist)
leftover = 0
if (self.datalen) % batchSize:
leftover = 1
self.num_batches = self.datalen // batchSize + leftover
# initialize the queue used to store data
if opt.sp:
self.Q = Queue(maxsize=queueSize)
else:
self.Q = mp.Queue(maxsize=queueSize)
def start(self):
# start a thread to read frames from the file video stream
if self.format == 'ssd':
if opt.sp:
p = Thread(target=self.getitem_ssd, args=())
else:
p = mp.Process(target=self.getitem_ssd, args=())
elif self.format == 'yolo':
if opt.sp:
p = Thread(target=self.getitem_yolo, args=())
else:
p = mp.Process(target=self.getitem_yolo, args=())
else:
raise NotImplementedError
p.daemon = True
p.start()
return self
def getitem_ssd(self):
length = len(self.imglist)
for index in range(length):
im_name = self.imglist[index].rstrip('\n').rstrip('\r')
im_name = os.path.join(self.img_dir, im_name)
im = Image.open(im_name)
inp = load_image(im_name)
if im.mode == 'L':
im = im.convert('RGB')
ow = oh = 512
im = im.resize((ow, oh))
im = self.transform(im)
while self.Q.full():
time.sleep(2)
self.Q.put((im, inp, im_name))
def getitem_yolo(self):
for i in range(self.num_batches):
img = []
orig_img = []
im_name = []
im_dim_list = []
for k in range(i*self.batchSize, min((i + 1)*self.batchSize, self.datalen)):
inp_dim = int(opt.inp_dim)
im_name_k = self.imglist[k].rstrip('\n').rstrip('\r')
im_name_k = os.path.join(self.img_dir, im_name_k)
img_k, orig_img_k, im_dim_list_k = prep_image(im_name_k, inp_dim)
img.append(img_k)
orig_img.append(orig_img_k)
im_name.append(im_name_k)
im_dim_list.append(im_dim_list_k)
with torch.no_grad():
# Human Detection
img = torch.cat(img)
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
im_dim_list_ = im_dim_list
while self.Q.full():
time.sleep(2)
self.Q.put((img, orig_img, im_name, im_dim_list))
def getitem(self):
return self.Q.get()
def length(self):
return len(self.imglist)
def len(self):
return self.Q.qsize()
class VideoLoader:
def __init__(self, path, batchSize=1, queueSize=50):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.path = path
stream = cv2.VideoCapture(path)
assert stream.isOpened(), 'Cannot capture source'
self.fourcc=int(stream.get(cv2.CAP_PROP_FOURCC))
self.fps=stream.get(cv2.CAP_PROP_FPS)
self.frameSize=(int(stream.get(cv2.CAP_PROP_FRAME_WIDTH)),int(stream.get(cv2.CAP_PROP_FRAME_HEIGHT)))
self.stopped = False
self.batchSize = batchSize
self.datalen = int(stream.get(cv2.CAP_PROP_FRAME_COUNT))
leftover = 0
if (self.datalen) % batchSize:
leftover = 1
self.num_batches = self.datalen // batchSize + leftover
# initialize the queue used to store frames read from
# the video file
if opt.sp:
self.Q = Queue(maxsize=queueSize)
else:
self.Q = mp.Queue(maxsize=queueSize)
def length(self):
return self.datalen
def start(self):
# start a thread to read frames from the file video stream
if opt.sp:
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
else:
p = mp.Process(target=self.update, args=())
p.daemon = True
p.start()
return self
def update(self):
stream = cv2.VideoCapture(self.path)
assert stream.isOpened(), 'Cannot capture source'
for i in range(self.num_batches):
img = []
orig_img = []
im_name = []
im_dim_list = []
for k in range(i*self.batchSize, min((i + 1)*self.batchSize, self.datalen)):
inp_dim = int(opt.inp_dim)
(grabbed, frame) = stream.read()
# if the `grabbed` boolean is `False`, then we have
# reached the end of the video file
if not grabbed:
self.Q.put((None, None, None, None))
print('===========================> This video get '+str(k)+' frames in total.')
sys.stdout.flush()
return
# process and add the frame to the queue
img_k, orig_img_k, im_dim_list_k = prep_frame(frame, inp_dim)
img.append(img_k)
orig_img.append(orig_img_k)
im_name.append(str(k)+'.jpg')
im_dim_list.append(im_dim_list_k)
with torch.no_grad():
# Human Detection
img = torch.cat(img)
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
im_dim_list_ = im_dim_list
while self.Q.full():
time.sleep(2)
self.Q.put((img, orig_img, im_name, im_dim_list))
def videoinfo(self):
# indicate the video info
return (self.fourcc,self.fps,self.frameSize)
def getitem(self):
# return next frame in the queue
return self.Q.get()
def len(self):
return self.Q.qsize()
class DetectionLoader:
def __init__(self, dataloder, batchSize=1, queueSize=1024):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.det_model = Darknet("../AlphaPose/yolo/cfg/yolov3-spp.cfg")
self.det_model.load_weights('../AlphaPose/models/yolo/yolov3-spp.weights')
self.det_model.net_info['height'] = opt.inp_dim
self.det_inp_dim = int(self.det_model.net_info['height'])
assert self.det_inp_dim % 32 == 0
assert self.det_inp_dim > 32
self.det_model.to(device)
self.det_model.eval()
self.stopped = False
self.dataloder = dataloder
self.batchSize = batchSize
self.datalen = self.dataloder.length()
leftover = 0
if (self.datalen) % batchSize:
leftover = 1
self.num_batches = self.datalen // batchSize + leftover
# initialize the queue used to store frames read from
# the video file
if opt.sp:
self.Q = Queue(maxsize=queueSize)
else:
self.Q = mp.Queue(maxsize=queueSize)
def start(self):
# start a thread to read frames from the file video stream
if opt.sp:
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
else:
p = mp.Process(target=self.update, args=())
p.daemon = True
p.start()
return self
def update(self):
# keep looping the whole dataset
for i in range(self.num_batches):
img, orig_img, im_name, im_dim_list = self.dataloder.getitem()
if img is None:
self.Q.put((None, None, None, None, None, None, None))
return
with torch.no_grad():
# Human Detection
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
img = img.to(device)
prediction = self.det_model(img, CUDA=False)
# NMS process
dets = dynamic_write_results(prediction, opt.confidence,
opt.num_classes, nms=True, nms_conf=opt.nms_thesh)
if isinstance(dets, int) or dets.shape[0] == 0:
for k in range(len(orig_img)):
if self.Q.full():
time.sleep(2)
self.Q.put((orig_img[k], im_name[k], None, None, None, None, None))
continue
dets = dets.cpu()
im_dim_list = torch.index_select(im_dim_list,0, dets[:, 0].long())
scaling_factor = torch.min(self.det_inp_dim / im_dim_list, 1)[0].view(-1, 1)
# coordinate transfer
dets[:, [1, 3]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
dets[:, [2, 4]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2
dets[:, 1:5] /= scaling_factor
for j in range(dets.shape[0]):
dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0])
dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1])
boxes = dets[:, 1:5]
scores = dets[:, 5:6]
for k in range(len(orig_img)):
boxes_k = boxes[dets[:,0]==k]
if isinstance(boxes_k, int) or boxes_k.shape[0] == 0:
if self.Q.full():
time.sleep(2)
self.Q.put((orig_img[k], im_name[k], None, None, None, None, None))
continue
inps = torch.zeros(boxes_k.size(0), 3, opt.inputResH, opt.inputResW)
pt1 = torch.zeros(boxes_k.size(0), 2)
pt2 = torch.zeros(boxes_k.size(0), 2)
if self.Q.full():
time.sleep(2)
self.Q.put((orig_img[k], im_name[k], boxes_k, scores[dets[:,0]==k], inps, pt1, pt2))
def read(self):
# return next frame in the queue
return self.Q.get()
def len(self):
# return queue len
return self.Q.qsize()
class DetectionProcessor:
def __init__(self, detectionLoader, queueSize=1024):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.detectionLoader = detectionLoader
self.stopped = False
self.datalen = self.detectionLoader.datalen
# initialize the queue used to store data
if opt.sp:
self.Q = Queue(maxsize=queueSize)
else:
self.Q = pQueue(maxsize=queueSize)
def start(self):
# start a thread to read frames from the file video stream
if opt.sp:
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
else:
p = mp.Process(target=self.update, args=())
p.daemon = True
p.start()
return self
def update(self):
# keep looping the whole dataset
for i in range(self.datalen):
with torch.no_grad():
(orig_img, im_name, boxes, scores, inps, pt1, pt2) = self.detectionLoader.read()
if orig_img is None:
self.Q.put((None, None, None, None, None, None, None))
return
if boxes is None or boxes.nelement() == 0:
while self.Q.full():
time.sleep(0.2)
self.Q.put((None, orig_img, im_name, boxes, scores, None, None))
continue
inp = im_to_torch(cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB))
inps, pt1, pt2 = crop_from_dets(inp, boxes, inps, pt1, pt2)
while self.Q.full():
time.sleep(0.2)
self.Q.put((inps, orig_img, im_name, boxes, scores, pt1, pt2))
def read(self):
# return next frame in the queue
return self.Q.get()
def len(self):
# return queue len
return self.Q.qsize()
class VideoDetectionLoader:
def __init__(self, path, batchSize=4, queueSize=256):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.det_model = Darknet("./yolo/cfg/yolov3-spp.cfg")
self.det_model.load_weights('./models/yolo/yolov3-spp.weights')
self.det_model.net_info['height'] = opt.inp_dim
self.det_inp_dim = int(self.det_model.net_info['height'])
assert self.det_inp_dim % 32 == 0
assert self.det_inp_dim > 32
self.det_model.to(device)
self.det_model.eval()
self.stream = cv2.VideoCapture(path)
assert self.stream.isOpened(), 'Cannot capture source'
self.stopped = False
self.batchSize = batchSize
self.datalen = int(self.stream.get(cv2.CAP_PROP_FRAME_COUNT))
leftover = 0
if (self.datalen) % batchSize:
leftover = 1
self.num_batches = self.datalen // batchSize + leftover
# initialize the queue used to store frames read from
# the video file
self.Q = Queue(maxsize=queueSize)
def length(self):
return self.datalen
def len(self):
return self.Q.qsize()
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping the whole video
for i in range(self.num_batches):
img = []
inp = []
orig_img = []
im_name = []
im_dim_list = []
for k in range(i*self.batchSize, min((i + 1)*self.batchSize, self.datalen)):
(grabbed, frame) = self.stream.read()
# if the `grabbed` boolean is `False`, then we have
# reached the end of the video file
if not grabbed:
self.stop()
return
# process and add the frame to the queue
inp_dim = int(opt.inp_dim)
img_k, orig_img_k, im_dim_list_k = prep_frame(frame, inp_dim)
inp_k = im_to_torch(orig_img_k)
img.append(img_k)
inp.append(inp_k)
orig_img.append(orig_img_k)
im_dim_list.append(im_dim_list_k)
with torch.no_grad():
ht = inp[0].size(1)
wd = inp[0].size(2)
# Human Detection
img = Variable(torch.cat(img)).cuda()
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
im_dim_list = im_dim_list.cuda()
prediction = self.det_model(img, CUDA=True)
# NMS process
dets = dynamic_write_results(prediction, opt.confidence,
opt.num_classes, nms=True, nms_conf=opt.nms_thesh)
if isinstance(dets, int) or dets.shape[0] == 0:
for k in range(len(inp)):
while self.Q.full():
time.sleep(0.2)
self.Q.put((inp[k], orig_img[k], None, None))
continue
im_dim_list = torch.index_select(im_dim_list,0, dets[:, 0].long())
scaling_factor = torch.min(self.det_inp_dim / im_dim_list, 1)[0].view(-1, 1)
# coordinate transfer
dets[:, [1, 3]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
dets[:, [2, 4]] -= (self.det_inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2
dets[:, 1:5] /= scaling_factor
for j in range(dets.shape[0]):
dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0])
dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1])
boxes = dets[:, 1:5].cpu()
scores = dets[:, 5:6].cpu()
for k in range(len(inp)):
while self.Q.full():
time.sleep(0.2)
self.Q.put((inp[k], orig_img[k], boxes[dets[:,0]==k], scores[dets[:,0]==k]))
def videoinfo(self):
# indicate the video info
fourcc=int(self.stream.get(cv2.CAP_PROP_FOURCC))
fps=self.stream.get(cv2.CAP_PROP_FPS)
frameSize=(int(self.stream.get(cv2.CAP_PROP_FRAME_WIDTH)),int(self.stream.get(cv2.CAP_PROP_FRAME_HEIGHT)))
return (fourcc,fps,frameSize)
def read(self):
# return next frame in the queue
return self.Q.get()
def more(self):
# return True if there are still frames in the queue
return self.Q.qsize() > 0
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
class WebcamLoader:
def __init__(self, webcam, queueSize=256):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.stream = cv2.VideoCapture(int(webcam))
assert self.stream.isOpened(), 'Cannot capture source'
self.stopped = False
# initialize the queue used to store frames read from
# the video file
self.Q = LifoQueue(maxsize=queueSize)
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping infinitely
while True:
# otherwise, ensure the queue has room in it
if not self.Q.full():
# read the next frame from the file
(grabbed, frame) = self.stream.read()
# if the `grabbed` boolean is `False`, then we have
# reached the end of the video file
if not grabbed:
self.stop()
return
# process and add the frame to the queue
inp_dim = int(opt.inp_dim)
img, orig_img, dim = prep_frame(frame, inp_dim)
inp = im_to_torch(orig_img)
im_dim_list = torch.FloatTensor([dim]).repeat(1, 2)
self.Q.put((img, orig_img, inp, im_dim_list))
else:
with self.Q.mutex:
self.Q.queue.clear()
def videoinfo(self):
# indicate the video info
fourcc=int(self.stream.get(cv2.CAP_PROP_FOURCC))
fps=self.stream.get(cv2.CAP_PROP_FPS)
frameSize=(int(self.stream.get(cv2.CAP_PROP_FRAME_WIDTH)),int(self.stream.get(cv2.CAP_PROP_FRAME_HEIGHT)))
return (fourcc,fps,frameSize)
def read(self):
# return next frame in the queue
return self.Q.get()
def len(self):
# return queue size
return self.Q.qsize()
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
class DataWriter:
def __init__(self, save_video=False,
savepath='examples/res/1.avi', fourcc=cv2.VideoWriter_fourcc(*'XVID'), fps=25, frameSize=(640,480),
queueSize=1024):
if save_video:
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.stream = cv2.VideoWriter(savepath, fourcc, fps, frameSize)
assert self.stream.isOpened(), 'Cannot open video for writing'
self.save_video = save_video
self.stopped = False
self.final_result = []
# initialize the queue used to store frames read from
# the video file
self.Q = Queue(maxsize=queueSize)
if opt.save_img:
if not os.path.exists(opt.outputpath + '/vis'):
os.mkdir(opt.outputpath + '/vis')
def start(self):
# start a thread to read frames from the file video stream
t = Thread(target=self.update, args=())
t.daemon = True
t.start()
return self
def update(self):
# keep looping infinitely
while True:
# if the thread indicator variable is set, stop the
# thread
if self.stopped:
if self.save_video:
self.stream.release()
return
# otherwise, ensure the queue is not empty
if not self.Q.empty():
(boxes, scores, hm_data, pt1, pt2, orig_img, im_name) = self.Q.get()
orig_img = np.array(orig_img, dtype=np.uint8)
if boxes is None:
if opt.save_img or opt.save_video or opt.vis:
img = orig_img
if opt.vis:
cv2.imshow("AlphaPose Demo", img)
cv2.waitKey(30)
if opt.save_img:
cv2.imwrite(os.path.join(opt.outputpath, 'vis', im_name), img)
if opt.save_video:
self.stream.write(img)
else:
# location prediction (n, kp, 2) | score prediction (n, kp, 1)
if opt.matching:
preds = getMultiPeakPrediction(
hm_data, pt1.numpy(), pt2.numpy(), opt.inputResH, opt.inputResW, opt.outputResH, opt.outputResW)
result = matching(boxes, scores.numpy(), preds)
else:
preds_hm, preds_img, preds_scores = getPrediction(
hm_data, pt1, pt2, opt.inputResH, opt.inputResW, opt.outputResH, opt.outputResW)
result = pose_nms(
boxes, scores, preds_img, preds_scores)
result = {
'imgname': im_name,
'result': result
}
self.final_result.append(result)
if opt.save_img or opt.save_video or opt.vis:
img = vis_frame(orig_img, result)
if opt.vis:
cv2.imshow("AlphaPose Demo", img)
cv2.waitKey(30)
if opt.save_img:
cv2.imwrite(os.path.join(opt.outputpath, 'vis', im_name), img)
if opt.save_video:
self.stream.write(img)
else:
time.sleep(0.1)
def running(self):
# indicate that the thread is still running
time.sleep(0.2)
return not self.Q.empty()
def save(self, boxes, scores, hm_data, pt1, pt2, orig_img, im_name):
# save next frame in the queue
self.Q.put((boxes, scores, hm_data, pt1, pt2, orig_img, im_name))
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
time.sleep(0.2)
def results(self):
# return final result
return self.final_result
def len(self):
# return queue len
return self.Q.qsize()
class Mscoco(data.Dataset):
def __init__(self, train=True, sigma=1,
scale_factor=(0.2, 0.3), rot_factor=40, label_type='Gaussian'):
self.img_folder = '../data/coco/images' # root image folders
self.is_train = train # training set or test set
self.inputResH = opt.inputResH
self.inputResW = opt.inputResW
self.outputResH = opt.outputResH
self.outputResW = opt.outputResW
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.nJoints_coco = 17
self.nJoints_mpii = 16
self.nJoints = 33
self.accIdxs = (1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17)
self.flipRef = ((2, 3), (4, 5), (6, 7),
(8, 9), (10, 11), (12, 13),
(14, 15), (16, 17))
def __getitem__(self, index):
pass
def __len__(self):
pass
def crop_from_dets(img, boxes, inps, pt1, pt2):
'''
Crop human from origin image according to Dectecion Results
'''
imght = img.size(1)
imgwidth = img.size(2)
tmp_img = img
tmp_img[0].add_(-0.406)
tmp_img[1].add_(-0.457)
tmp_img[2].add_(-0.480)
for i, box in enumerate(boxes):
upLeft = torch.Tensor(
(float(box[0]), float(box[1])))
bottomRight = torch.Tensor(
(float(box[2]), float(box[3])))
ht = bottomRight[1] - upLeft[1]
width = bottomRight[0] - upLeft[0]
scaleRate = 0.3
upLeft[0] = max(0, upLeft[0] - width * scaleRate / 2)
upLeft[1] = max(0, upLeft[1] - ht * scaleRate / 2)
bottomRight[0] = max(
min(imgwidth - 1, bottomRight[0] + width * scaleRate / 2), upLeft[0] + 5)
bottomRight[1] = max(
min(imght - 1, bottomRight[1] + ht * scaleRate / 2), upLeft[1] + 5)
try:
inps[i] = cropBox(tmp_img.clone(), upLeft, bottomRight, opt.inputResH, opt.inputResW)
except IndexError:
print(tmp_img.shape)
print(upLeft)
print(bottomRight)
print('===')
pt1[i] = upLeft
pt2[i] = bottomRight
return inps, pt1, pt2