You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/3rdparty/colmap-dev/lib/FLANN/algorithms/all_indices.h

198 lines
6.6 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_ALL_INDICES_H_
#define FLANN_ALL_INDICES_H_
#include "FLANN/general.h"
#include "FLANN/algorithms/nn_index.h"
#include "FLANN/algorithms/kdtree_index.h"
#include "FLANN/algorithms/kdtree_single_index.h"
#include "FLANN/algorithms/kmeans_index.h"
#include "FLANN/algorithms/composite_index.h"
#include "FLANN/algorithms/linear_index.h"
#include "FLANN/algorithms/hierarchical_clustering_index.h"
#include "FLANN/algorithms/lsh_index.h"
#include "FLANN/algorithms/autotuned_index.h"
#ifdef FLANN_USE_CUDA
#include "FLANN/algorithms/kdtree_cuda_3d_index.h"
#endif
namespace flann
{
/**
* enable_if sfinae helper
*/
template<bool, typename T = void> struct enable_if{};
template<typename T> struct enable_if<true,T> { typedef T type; };
/**
* disable_if sfinae helper
*/
template<bool, typename T> struct disable_if{ typedef T type; };
template<typename T> struct disable_if<true,T> { };
/**
* Check if two type are the same
*/
template <typename T, typename U>
struct same_type
{
enum {value = false};
};
template<typename T>
struct same_type<T,T>
{
enum {value = true};
};
#define HAS_MEMBER(member) \
template<typename T> \
struct member { \
typedef char No; \
typedef long Yes; \
template<typename C> static Yes test( typename C::member* ); \
template<typename C> static No test( ... ); \
enum { value = sizeof (test<T>(0))==sizeof(Yes) }; \
};
HAS_MEMBER(needs_kdtree_distance)
HAS_MEMBER(needs_vector_space_distance)
HAS_MEMBER(is_kdtree_distance)
HAS_MEMBER(is_vector_space_distance)
struct DummyDistance
{
typedef float ElementType;
typedef float ResultType;
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
{
return ResultType(0);
}
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return ResultType(0);
}
};
/**
* Checks if an index and a distance can be used together
*/
template<template <typename> class Index, typename Distance, typename ElemType>
struct valid_combination
{
static const bool value = same_type<ElemType,typename Distance::ElementType>::value &&
(!needs_kdtree_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value) &&
(!needs_vector_space_distance<Index<DummyDistance> >::value || is_kdtree_distance<Distance>::value || is_vector_space_distance<Distance>::value);
};
/*********************************************************
* Create index
**********************************************************/
template <template<typename> class Index, typename Distance, typename T>
inline NNIndex<Distance>* create_index_(flann::Matrix<T> data, const flann::IndexParams& params, const Distance& distance,
typename enable_if<valid_combination<Index,Distance,T>::value,void>::type* = 0)
{
return new Index<Distance>(data, params, distance);
}
template <template<typename> class Index, typename Distance, typename T>
inline NNIndex<Distance>* create_index_(flann::Matrix<T> data, const flann::IndexParams& params, const Distance& distance,
typename disable_if<valid_combination<Index,Distance,T>::value,void>::type* = 0)
{
return NULL;
}
template<typename Distance>
inline NNIndex<Distance>*
create_index_by_type(const flann_algorithm_t index_type,
const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
typedef typename Distance::ElementType ElementType;
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = create_index_<LinearIndex,Distance,ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE_SINGLE:
nnIndex = create_index_<KDTreeSingleIndex,Distance,ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE:
nnIndex = create_index_<KDTreeIndex,Distance,ElementType>(dataset, params, distance);
break;
//! #define this symbol before including flann.h to enable GPU search algorithms. But you have
//! to link libflann_cuda then!
#ifdef FLANN_USE_CUDA
case FLANN_INDEX_KDTREE_CUDA:
nnIndex = create_index_<KDTreeCuda3dIndex,Distance,ElementType>(dataset, params, distance);
break;
#endif
case FLANN_INDEX_KMEANS:
nnIndex = create_index_<KMeansIndex,Distance,ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_COMPOSITE:
nnIndex = create_index_<CompositeIndex,Distance,ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_AUTOTUNED:
nnIndex = create_index_<AutotunedIndex,Distance,ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = create_index_<HierarchicalClusteringIndex,Distance,ElementType>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = create_index_<LshIndex,Distance,ElementType>(dataset, params, distance);
break;
default:
throw FLANNException("Unknown index type");
}
if (nnIndex==NULL) {
throw FLANNException("Unsupported index/distance combination");
}
return nnIndex;
}
}
#endif /* FLANN_ALL_INDICES_H_ */