|
|
/***********************************************************************
|
|
|
* Software License Agreement (BSD License)
|
|
|
*
|
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
|
*
|
|
|
* THE BSD LICENSE
|
|
|
*
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
* are met:
|
|
|
*
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
*
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
*************************************************************************/
|
|
|
|
|
|
#ifndef FLANN_DIST_H_
|
|
|
#define FLANN_DIST_H_
|
|
|
|
|
|
#include <cmath>
|
|
|
#include <cstdlib>
|
|
|
#include <string.h>
|
|
|
#ifdef _MSC_VER
|
|
|
typedef unsigned __int32 uint32_t;
|
|
|
typedef unsigned __int64 uint64_t;
|
|
|
#else
|
|
|
#include <stdint.h>
|
|
|
#endif
|
|
|
|
|
|
#include "FLANN/defines.h"
|
|
|
|
|
|
|
|
|
namespace flann
|
|
|
{
|
|
|
|
|
|
template<typename T>
|
|
|
struct Accumulator { typedef T Type; };
|
|
|
template<>
|
|
|
struct Accumulator<unsigned char> { typedef float Type; };
|
|
|
template<>
|
|
|
struct Accumulator<unsigned short> { typedef float Type; };
|
|
|
template<>
|
|
|
struct Accumulator<unsigned int> { typedef float Type; };
|
|
|
template<>
|
|
|
struct Accumulator<char> { typedef float Type; };
|
|
|
template<>
|
|
|
struct Accumulator<short> { typedef float Type; };
|
|
|
template<>
|
|
|
struct Accumulator<int> { typedef float Type; };
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
* Squared Euclidean distance functor.
|
|
|
*
|
|
|
* This is the simpler, unrolled version. This is preferable for
|
|
|
* very low dimensionality data (eg 3D points)
|
|
|
*/
|
|
|
template<class T>
|
|
|
struct L2_Simple
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType diff;
|
|
|
for(size_t i = 0; i < size; ++i ) {
|
|
|
diff = *a++ - *b++;
|
|
|
result += diff*diff;
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
return (a-b)*(a-b);
|
|
|
}
|
|
|
};
|
|
|
|
|
|
template<class T>
|
|
|
struct L2_3D
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType diff;
|
|
|
diff = *a++ - *b++;
|
|
|
result += diff*diff;
|
|
|
diff = *a++ - *b++;
|
|
|
result += diff*diff;
|
|
|
diff = *a++ - *b++;
|
|
|
result += diff*diff;
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
return (a-b)*(a-b);
|
|
|
}
|
|
|
};
|
|
|
|
|
|
/**
|
|
|
* Squared Euclidean distance functor, optimized version
|
|
|
*/
|
|
|
template<class T>
|
|
|
struct L2
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
/**
|
|
|
* Compute the squared Euclidean distance between two vectors.
|
|
|
*
|
|
|
* This is highly optimised, with loop unrolling, as it is one
|
|
|
* of the most expensive inner loops.
|
|
|
*
|
|
|
* The computation of squared root at the end is omitted for
|
|
|
* efficiency.
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType diff0, diff1, diff2, diff3;
|
|
|
Iterator1 last = a + size;
|
|
|
Iterator1 lastgroup = last - 3;
|
|
|
|
|
|
/* Process 4 items with each loop for efficiency. */
|
|
|
while (a < lastgroup) {
|
|
|
diff0 = (ResultType)(a[0] - b[0]);
|
|
|
diff1 = (ResultType)(a[1] - b[1]);
|
|
|
diff2 = (ResultType)(a[2] - b[2]);
|
|
|
diff3 = (ResultType)(a[3] - b[3]);
|
|
|
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
|
|
|
a += 4;
|
|
|
b += 4;
|
|
|
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) {
|
|
|
return result;
|
|
|
}
|
|
|
}
|
|
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
|
|
while (a < last) {
|
|
|
diff0 = (ResultType)(*a++ - *b++);
|
|
|
result += diff0 * diff0;
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* Partial euclidean distance, using just one dimension. This is used by the
|
|
|
* kd-tree when computing partial distances while traversing the tree.
|
|
|
*
|
|
|
* Squared root is omitted for efficiency.
|
|
|
*/
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
return (a-b)*(a-b);
|
|
|
}
|
|
|
};
|
|
|
|
|
|
|
|
|
/*
|
|
|
* Manhattan distance functor, optimized version
|
|
|
*/
|
|
|
template<class T>
|
|
|
struct L1
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
/**
|
|
|
* Compute the Manhattan (L_1) distance between two vectors.
|
|
|
*
|
|
|
* This is highly optimised, with loop unrolling, as it is one
|
|
|
* of the most expensive inner loops.
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType diff0, diff1, diff2, diff3;
|
|
|
Iterator1 last = a + size;
|
|
|
Iterator1 lastgroup = last - 3;
|
|
|
|
|
|
/* Process 4 items with each loop for efficiency. */
|
|
|
while (a < lastgroup) {
|
|
|
diff0 = (ResultType)std::abs(a[0] - b[0]);
|
|
|
diff1 = (ResultType)std::abs(a[1] - b[1]);
|
|
|
diff2 = (ResultType)std::abs(a[2] - b[2]);
|
|
|
diff3 = (ResultType)std::abs(a[3] - b[3]);
|
|
|
result += diff0 + diff1 + diff2 + diff3;
|
|
|
a += 4;
|
|
|
b += 4;
|
|
|
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) {
|
|
|
return result;
|
|
|
}
|
|
|
}
|
|
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
|
|
while (a < last) {
|
|
|
diff0 = (ResultType)std::abs(*a++ - *b++);
|
|
|
result += diff0;
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* Partial distance, used by the kd-tree.
|
|
|
*/
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
return std::abs(a-b);
|
|
|
}
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
struct MinkowskiDistance
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
int order;
|
|
|
|
|
|
MinkowskiDistance(int order_) : order(order_) {}
|
|
|
|
|
|
/**
|
|
|
* Compute the Minkowsky (L_p) distance between two vectors.
|
|
|
*
|
|
|
* This is highly optimised, with loop unrolling, as it is one
|
|
|
* of the most expensive inner loops.
|
|
|
*
|
|
|
* The computation of squared root at the end is omitted for
|
|
|
* efficiency.
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType diff0, diff1, diff2, diff3;
|
|
|
Iterator1 last = a + size;
|
|
|
Iterator1 lastgroup = last - 3;
|
|
|
|
|
|
/* Process 4 items with each loop for efficiency. */
|
|
|
while (a < lastgroup) {
|
|
|
diff0 = (ResultType)std::abs(a[0] - b[0]);
|
|
|
diff1 = (ResultType)std::abs(a[1] - b[1]);
|
|
|
diff2 = (ResultType)std::abs(a[2] - b[2]);
|
|
|
diff3 = (ResultType)std::abs(a[3] - b[3]);
|
|
|
result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
|
|
|
a += 4;
|
|
|
b += 4;
|
|
|
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) {
|
|
|
return result;
|
|
|
}
|
|
|
}
|
|
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
|
|
while (a < last) {
|
|
|
diff0 = (ResultType)std::abs(*a++ - *b++);
|
|
|
result += pow(diff0,order);
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* Partial distance, used by the kd-tree.
|
|
|
*/
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
return pow(static_cast<ResultType>(std::abs(a-b)),order);
|
|
|
}
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
struct MaxDistance
|
|
|
{
|
|
|
typedef bool is_vector_space_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
/**
|
|
|
* Compute the max distance (L_infinity) between two vectors.
|
|
|
*
|
|
|
* This distance is not a valid kdtree distance, it's not dimensionwise additive.
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType diff0, diff1, diff2, diff3;
|
|
|
Iterator1 last = a + size;
|
|
|
Iterator1 lastgroup = last - 3;
|
|
|
|
|
|
/* Process 4 items with each loop for efficiency. */
|
|
|
while (a < lastgroup) {
|
|
|
diff0 = std::abs(a[0] - b[0]);
|
|
|
diff1 = std::abs(a[1] - b[1]);
|
|
|
diff2 = std::abs(a[2] - b[2]);
|
|
|
diff3 = std::abs(a[3] - b[3]);
|
|
|
if (diff0>result) {result = diff0; }
|
|
|
if (diff1>result) {result = diff1; }
|
|
|
if (diff2>result) {result = diff2; }
|
|
|
if (diff3>result) {result = diff3; }
|
|
|
a += 4;
|
|
|
b += 4;
|
|
|
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) {
|
|
|
return result;
|
|
|
}
|
|
|
}
|
|
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
|
|
while (a < last) {
|
|
|
diff0 = std::abs(*a++ - *b++);
|
|
|
result = (diff0>result) ? diff0 : result;
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/* This distance functor is not dimension-wise additive, which
|
|
|
* makes it an invalid kd-tree distance, not implementing the accum_dist method */
|
|
|
|
|
|
};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
/**
|
|
|
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
|
|
|
* bit count of A exclusive XOR'ed with B
|
|
|
*/
|
|
|
struct HammingLUT
|
|
|
{
|
|
|
typedef unsigned char ElementType;
|
|
|
typedef int ResultType;
|
|
|
|
|
|
/** this will count the bits in a ^ b
|
|
|
*/
|
|
|
ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const
|
|
|
{
|
|
|
ResultType result = 0;
|
|
|
for (int i = 0; i < size; i++) {
|
|
|
result += byteBitsLookUp(a[i] ^ b[i]);
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
|
|
|
/** \brief given a byte, count the bits using a look up table
|
|
|
* \param b the byte to count bits. The look up table has an entry for all
|
|
|
* values of b, where that entry is the number of bits.
|
|
|
* \return the number of bits in byte b
|
|
|
*/
|
|
|
static unsigned char byteBitsLookUp(unsigned char b)
|
|
|
{
|
|
|
static const unsigned char table[256] = {
|
|
|
/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
|
|
|
/* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
|
|
|
/* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
|
|
|
/* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4,
|
|
|
/* 10 */ 1, /* 11 */ 2, /* 12 */ 2, /* 13 */ 3,
|
|
|
/* 14 */ 2, /* 15 */ 3, /* 16 */ 3, /* 17 */ 4,
|
|
|
/* 18 */ 2, /* 19 */ 3, /* 1a */ 3, /* 1b */ 4,
|
|
|
/* 1c */ 3, /* 1d */ 4, /* 1e */ 4, /* 1f */ 5,
|
|
|
/* 20 */ 1, /* 21 */ 2, /* 22 */ 2, /* 23 */ 3,
|
|
|
/* 24 */ 2, /* 25 */ 3, /* 26 */ 3, /* 27 */ 4,
|
|
|
/* 28 */ 2, /* 29 */ 3, /* 2a */ 3, /* 2b */ 4,
|
|
|
/* 2c */ 3, /* 2d */ 4, /* 2e */ 4, /* 2f */ 5,
|
|
|
/* 30 */ 2, /* 31 */ 3, /* 32 */ 3, /* 33 */ 4,
|
|
|
/* 34 */ 3, /* 35 */ 4, /* 36 */ 4, /* 37 */ 5,
|
|
|
/* 38 */ 3, /* 39 */ 4, /* 3a */ 4, /* 3b */ 5,
|
|
|
/* 3c */ 4, /* 3d */ 5, /* 3e */ 5, /* 3f */ 6,
|
|
|
/* 40 */ 1, /* 41 */ 2, /* 42 */ 2, /* 43 */ 3,
|
|
|
/* 44 */ 2, /* 45 */ 3, /* 46 */ 3, /* 47 */ 4,
|
|
|
/* 48 */ 2, /* 49 */ 3, /* 4a */ 3, /* 4b */ 4,
|
|
|
/* 4c */ 3, /* 4d */ 4, /* 4e */ 4, /* 4f */ 5,
|
|
|
/* 50 */ 2, /* 51 */ 3, /* 52 */ 3, /* 53 */ 4,
|
|
|
/* 54 */ 3, /* 55 */ 4, /* 56 */ 4, /* 57 */ 5,
|
|
|
/* 58 */ 3, /* 59 */ 4, /* 5a */ 4, /* 5b */ 5,
|
|
|
/* 5c */ 4, /* 5d */ 5, /* 5e */ 5, /* 5f */ 6,
|
|
|
/* 60 */ 2, /* 61 */ 3, /* 62 */ 3, /* 63 */ 4,
|
|
|
/* 64 */ 3, /* 65 */ 4, /* 66 */ 4, /* 67 */ 5,
|
|
|
/* 68 */ 3, /* 69 */ 4, /* 6a */ 4, /* 6b */ 5,
|
|
|
/* 6c */ 4, /* 6d */ 5, /* 6e */ 5, /* 6f */ 6,
|
|
|
/* 70 */ 3, /* 71 */ 4, /* 72 */ 4, /* 73 */ 5,
|
|
|
/* 74 */ 4, /* 75 */ 5, /* 76 */ 5, /* 77 */ 6,
|
|
|
/* 78 */ 4, /* 79 */ 5, /* 7a */ 5, /* 7b */ 6,
|
|
|
/* 7c */ 5, /* 7d */ 6, /* 7e */ 6, /* 7f */ 7,
|
|
|
/* 80 */ 1, /* 81 */ 2, /* 82 */ 2, /* 83 */ 3,
|
|
|
/* 84 */ 2, /* 85 */ 3, /* 86 */ 3, /* 87 */ 4,
|
|
|
/* 88 */ 2, /* 89 */ 3, /* 8a */ 3, /* 8b */ 4,
|
|
|
/* 8c */ 3, /* 8d */ 4, /* 8e */ 4, /* 8f */ 5,
|
|
|
/* 90 */ 2, /* 91 */ 3, /* 92 */ 3, /* 93 */ 4,
|
|
|
/* 94 */ 3, /* 95 */ 4, /* 96 */ 4, /* 97 */ 5,
|
|
|
/* 98 */ 3, /* 99 */ 4, /* 9a */ 4, /* 9b */ 5,
|
|
|
/* 9c */ 4, /* 9d */ 5, /* 9e */ 5, /* 9f */ 6,
|
|
|
/* a0 */ 2, /* a1 */ 3, /* a2 */ 3, /* a3 */ 4,
|
|
|
/* a4 */ 3, /* a5 */ 4, /* a6 */ 4, /* a7 */ 5,
|
|
|
/* a8 */ 3, /* a9 */ 4, /* aa */ 4, /* ab */ 5,
|
|
|
/* ac */ 4, /* ad */ 5, /* ae */ 5, /* af */ 6,
|
|
|
/* b0 */ 3, /* b1 */ 4, /* b2 */ 4, /* b3 */ 5,
|
|
|
/* b4 */ 4, /* b5 */ 5, /* b6 */ 5, /* b7 */ 6,
|
|
|
/* b8 */ 4, /* b9 */ 5, /* ba */ 5, /* bb */ 6,
|
|
|
/* bc */ 5, /* bd */ 6, /* be */ 6, /* bf */ 7,
|
|
|
/* c0 */ 2, /* c1 */ 3, /* c2 */ 3, /* c3 */ 4,
|
|
|
/* c4 */ 3, /* c5 */ 4, /* c6 */ 4, /* c7 */ 5,
|
|
|
/* c8 */ 3, /* c9 */ 4, /* ca */ 4, /* cb */ 5,
|
|
|
/* cc */ 4, /* cd */ 5, /* ce */ 5, /* cf */ 6,
|
|
|
/* d0 */ 3, /* d1 */ 4, /* d2 */ 4, /* d3 */ 5,
|
|
|
/* d4 */ 4, /* d5 */ 5, /* d6 */ 5, /* d7 */ 6,
|
|
|
/* d8 */ 4, /* d9 */ 5, /* da */ 5, /* db */ 6,
|
|
|
/* dc */ 5, /* dd */ 6, /* de */ 6, /* df */ 7,
|
|
|
/* e0 */ 3, /* e1 */ 4, /* e2 */ 4, /* e3 */ 5,
|
|
|
/* e4 */ 4, /* e5 */ 5, /* e6 */ 5, /* e7 */ 6,
|
|
|
/* e8 */ 4, /* e9 */ 5, /* ea */ 5, /* eb */ 6,
|
|
|
/* ec */ 5, /* ed */ 6, /* ee */ 6, /* ef */ 7,
|
|
|
/* f0 */ 4, /* f1 */ 5, /* f2 */ 5, /* f3 */ 6,
|
|
|
/* f4 */ 5, /* f5 */ 6, /* f6 */ 6, /* f7 */ 7,
|
|
|
/* f8 */ 5, /* f9 */ 6, /* fa */ 6, /* fb */ 7,
|
|
|
/* fc */ 6, /* fd */ 7, /* fe */ 7, /* ff */ 8
|
|
|
};
|
|
|
return table[b];
|
|
|
}
|
|
|
};
|
|
|
|
|
|
/**
|
|
|
* Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
|
|
|
* That code was taken from brief.cpp in OpenCV
|
|
|
*/
|
|
|
template<class T>
|
|
|
struct HammingPopcnt
|
|
|
{
|
|
|
typedef T ElementType;
|
|
|
typedef int ResultType;
|
|
|
|
|
|
template<typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
|
|
{
|
|
|
ResultType result = 0;
|
|
|
#if __GNUC__
|
|
|
#if ANDROID && HAVE_NEON
|
|
|
static uint64_t features = android_getCpuFeatures();
|
|
|
if ((features& ANDROID_CPU_ARM_FEATURE_NEON)) {
|
|
|
for (size_t i = 0; i < size; i += 16) {
|
|
|
uint8x16_t A_vec = vld1q_u8 (a + i);
|
|
|
uint8x16_t B_vec = vld1q_u8 (b + i);
|
|
|
//uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t)
|
|
|
uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
|
|
|
|
|
|
uint8x16_t bitsSet += vcntq_u8 (AxorB);
|
|
|
//uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t)
|
|
|
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
|
|
|
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
|
|
|
|
|
|
uint64x2_t bitSet2 = vpaddlq_u32 (bitSet4);
|
|
|
result += vgetq_lane_u64 (bitSet2,0);
|
|
|
result += vgetq_lane_u64 (bitSet2,1);
|
|
|
}
|
|
|
}
|
|
|
else
|
|
|
#endif
|
|
|
//for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
|
|
|
typedef unsigned long long pop_t;
|
|
|
const size_t modulo = size % sizeof(pop_t);
|
|
|
const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
|
|
|
const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
|
|
|
const pop_t* a2_end = a2 + (size / sizeof(pop_t));
|
|
|
|
|
|
for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
|
|
|
|
|
|
if (modulo) {
|
|
|
//in the case where size is not dividable by sizeof(size_t)
|
|
|
//need to mask off the bits at the end
|
|
|
pop_t a_final = 0, b_final = 0;
|
|
|
memcpy(&a_final, a2, modulo);
|
|
|
memcpy(&b_final, b2, modulo);
|
|
|
result += __builtin_popcountll(a_final ^ b_final);
|
|
|
}
|
|
|
#else
|
|
|
HammingLUT lut;
|
|
|
result = lut(reinterpret_cast<const unsigned char*> (a),
|
|
|
reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
|
|
|
#endif
|
|
|
return result;
|
|
|
}
|
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
|
struct Hamming
|
|
|
{
|
|
|
typedef T ElementType;
|
|
|
typedef unsigned int ResultType;
|
|
|
|
|
|
/** This is popcount_3() from:
|
|
|
* http://en.wikipedia.org/wiki/Hamming_weight */
|
|
|
unsigned int popcnt32(uint32_t n) const
|
|
|
{
|
|
|
n -= ((n >> 1) & 0x55555555);
|
|
|
n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
|
|
|
return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
|
|
|
}
|
|
|
|
|
|
unsigned int popcnt64(uint64_t n) const
|
|
|
{
|
|
|
n -= ((n >> 1) & 0x5555555555555555LL);
|
|
|
n = (n & 0x3333333333333333LL) + ((n >> 2) & 0x3333333333333333LL);
|
|
|
return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0fLL)* 0x0101010101010101LL) >> 56;
|
|
|
}
|
|
|
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = 0) const
|
|
|
{
|
|
|
#ifdef FLANN_PLATFORM_64_BIT
|
|
|
const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
|
|
|
const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
|
|
|
ResultType result = 0;
|
|
|
size /= (sizeof(uint64_t)/sizeof(unsigned char));
|
|
|
for(size_t i = 0; i < size; ++i ) {
|
|
|
result += popcnt64(*pa ^ *pb);
|
|
|
++pa;
|
|
|
++pb;
|
|
|
}
|
|
|
#else
|
|
|
const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
|
|
|
const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
|
|
|
ResultType result = 0;
|
|
|
size /= (sizeof(uint32_t)/sizeof(unsigned char));
|
|
|
for(size_t i = 0; i < size; ++i ) {
|
|
|
result += popcnt32(*pa ^ *pb);
|
|
|
++pa;
|
|
|
++pb;
|
|
|
}
|
|
|
#endif
|
|
|
return result;
|
|
|
}
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
template<class T>
|
|
|
struct HistIntersectionDistance
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
/**
|
|
|
* Compute the histogram intersection distance
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType min0, min1, min2, min3;
|
|
|
Iterator1 last = a + size;
|
|
|
Iterator1 lastgroup = last - 3;
|
|
|
|
|
|
/* Process 4 items with each loop for efficiency. */
|
|
|
while (a < lastgroup) {
|
|
|
min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
|
|
|
min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
|
|
|
min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
|
|
|
min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
|
|
|
result += min0 + min1 + min2 + min3;
|
|
|
a += 4;
|
|
|
b += 4;
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) {
|
|
|
return result;
|
|
|
}
|
|
|
}
|
|
|
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
|
|
|
while (a < last) {
|
|
|
min0 = (ResultType)(*a < *b ? *a : *b);
|
|
|
result += min0;
|
|
|
++a;
|
|
|
++b;
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* Partial distance, used by the kd-tree.
|
|
|
*/
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
return a<b ? a : b;
|
|
|
}
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
struct HellingerDistance
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
/**
|
|
|
* Compute the Hellinger distance
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType diff0, diff1, diff2, diff3;
|
|
|
Iterator1 last = a + size;
|
|
|
Iterator1 lastgroup = last - 3;
|
|
|
|
|
|
/* Process 4 items with each loop for efficiency. */
|
|
|
while (a < lastgroup) {
|
|
|
diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
|
|
|
diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
|
|
|
diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
|
|
|
diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
|
|
|
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
|
|
|
a += 4;
|
|
|
b += 4;
|
|
|
}
|
|
|
while (a < last) {
|
|
|
diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
|
|
|
result += diff0 * diff0;
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* Partial distance, used by the kd-tree.
|
|
|
*/
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
ResultType dist = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
|
|
|
return dist * dist;
|
|
|
}
|
|
|
};
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
struct ChiSquareDistance
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
/**
|
|
|
* Compute the chi-square distance
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType sum, diff;
|
|
|
Iterator1 last = a + size;
|
|
|
|
|
|
while (a < last) {
|
|
|
sum = (ResultType)(*a + *b);
|
|
|
if (sum>0) {
|
|
|
diff = (ResultType)(*a - *b);
|
|
|
result += diff*diff/sum;
|
|
|
}
|
|
|
++a;
|
|
|
++b;
|
|
|
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) {
|
|
|
return result;
|
|
|
}
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* Partial distance, used by the kd-tree.
|
|
|
*/
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
ResultType sum, diff;
|
|
|
|
|
|
sum = (ResultType)(a+b);
|
|
|
if (sum>0) {
|
|
|
diff = (ResultType)(a-b);
|
|
|
result = diff*diff/sum;
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
};
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
struct KL_Divergence
|
|
|
{
|
|
|
typedef bool is_kdtree_distance;
|
|
|
|
|
|
typedef T ElementType;
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
/**
|
|
|
* Compute the Kullback–Leibler divergence
|
|
|
*/
|
|
|
template <typename Iterator1, typename Iterator2>
|
|
|
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
Iterator1 last = a + size;
|
|
|
|
|
|
while (a < last) {
|
|
|
if ( *a != 0 && *b != 0 ) {
|
|
|
ResultType ratio = (ResultType)(*a / *b);
|
|
|
if (ratio>0) {
|
|
|
result += *a * log(ratio);
|
|
|
}
|
|
|
}
|
|
|
++a;
|
|
|
++b;
|
|
|
|
|
|
if ((worst_dist>0)&&(result>worst_dist)) {
|
|
|
return result;
|
|
|
}
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* Partial distance, used by the kd-tree.
|
|
|
*/
|
|
|
template <typename U, typename V>
|
|
|
inline ResultType accum_dist(const U& a, const V& b, int) const
|
|
|
{
|
|
|
ResultType result = ResultType();
|
|
|
if( a != 0 && b != 0 ) {
|
|
|
ResultType ratio = (ResultType)(a / b);
|
|
|
if (ratio>0) {
|
|
|
result = a * log(ratio);
|
|
|
}
|
|
|
}
|
|
|
return result;
|
|
|
}
|
|
|
};
|
|
|
|
|
|
}
|
|
|
|
|
|
#endif //FLANN_DIST_H_
|