You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/3rdparty/colmap-dev/lib/FLANN/algorithms/dist.h

791 lines
26 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_DIST_H_
#define FLANN_DIST_H_
#include <cmath>
#include <cstdlib>
#include <string.h>
#ifdef _MSC_VER
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
#else
#include <stdint.h>
#endif
#include "FLANN/defines.h"
namespace flann
{
template<typename T>
struct Accumulator { typedef T Type; };
template<>
struct Accumulator<unsigned char> { typedef float Type; };
template<>
struct Accumulator<unsigned short> { typedef float Type; };
template<>
struct Accumulator<unsigned int> { typedef float Type; };
template<>
struct Accumulator<char> { typedef float Type; };
template<>
struct Accumulator<short> { typedef float Type; };
template<>
struct Accumulator<int> { typedef float Type; };
/**
* Squared Euclidean distance functor.
*
* This is the simpler, unrolled version. This is preferable for
* very low dimensionality data (eg 3D points)
*/
template<class T>
struct L2_Simple
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
{
ResultType result = ResultType();
ResultType diff;
for(size_t i = 0; i < size; ++i ) {
diff = *a++ - *b++;
result += diff*diff;
}
return result;
}
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return (a-b)*(a-b);
}
};
template<class T>
struct L2_3D
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
{
ResultType result = ResultType();
ResultType diff;
diff = *a++ - *b++;
result += diff*diff;
diff = *a++ - *b++;
result += diff*diff;
diff = *a++ - *b++;
result += diff*diff;
return result;
}
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return (a-b)*(a-b);
}
};
/**
* Squared Euclidean distance functor, optimized version
*/
template<class T>
struct L2
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
/**
* Compute the squared Euclidean distance between two vectors.
*
* This is highly optimised, with loop unrolling, as it is one
* of the most expensive inner loops.
*
* The computation of squared root at the end is omitted for
* efficiency.
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
{
ResultType result = ResultType();
ResultType diff0, diff1, diff2, diff3;
Iterator1 last = a + size;
Iterator1 lastgroup = last - 3;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
diff0 = (ResultType)(a[0] - b[0]);
diff1 = (ResultType)(a[1] - b[1]);
diff2 = (ResultType)(a[2] - b[2]);
diff3 = (ResultType)(a[3] - b[3]);
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
a += 4;
b += 4;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
while (a < last) {
diff0 = (ResultType)(*a++ - *b++);
result += diff0 * diff0;
}
return result;
}
/**
* Partial euclidean distance, using just one dimension. This is used by the
* kd-tree when computing partial distances while traversing the tree.
*
* Squared root is omitted for efficiency.
*/
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return (a-b)*(a-b);
}
};
/*
* Manhattan distance functor, optimized version
*/
template<class T>
struct L1
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
/**
* Compute the Manhattan (L_1) distance between two vectors.
*
* This is highly optimised, with loop unrolling, as it is one
* of the most expensive inner loops.
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
{
ResultType result = ResultType();
ResultType diff0, diff1, diff2, diff3;
Iterator1 last = a + size;
Iterator1 lastgroup = last - 3;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
diff0 = (ResultType)std::abs(a[0] - b[0]);
diff1 = (ResultType)std::abs(a[1] - b[1]);
diff2 = (ResultType)std::abs(a[2] - b[2]);
diff3 = (ResultType)std::abs(a[3] - b[3]);
result += diff0 + diff1 + diff2 + diff3;
a += 4;
b += 4;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
while (a < last) {
diff0 = (ResultType)std::abs(*a++ - *b++);
result += diff0;
}
return result;
}
/**
* Partial distance, used by the kd-tree.
*/
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return std::abs(a-b);
}
};
template<class T>
struct MinkowskiDistance
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
int order;
MinkowskiDistance(int order_) : order(order_) {}
/**
* Compute the Minkowsky (L_p) distance between two vectors.
*
* This is highly optimised, with loop unrolling, as it is one
* of the most expensive inner loops.
*
* The computation of squared root at the end is omitted for
* efficiency.
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
{
ResultType result = ResultType();
ResultType diff0, diff1, diff2, diff3;
Iterator1 last = a + size;
Iterator1 lastgroup = last - 3;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
diff0 = (ResultType)std::abs(a[0] - b[0]);
diff1 = (ResultType)std::abs(a[1] - b[1]);
diff2 = (ResultType)std::abs(a[2] - b[2]);
diff3 = (ResultType)std::abs(a[3] - b[3]);
result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
a += 4;
b += 4;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
while (a < last) {
diff0 = (ResultType)std::abs(*a++ - *b++);
result += pow(diff0,order);
}
return result;
}
/**
* Partial distance, used by the kd-tree.
*/
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return pow(static_cast<ResultType>(std::abs(a-b)),order);
}
};
template<class T>
struct MaxDistance
{
typedef bool is_vector_space_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
/**
* Compute the max distance (L_infinity) between two vectors.
*
* This distance is not a valid kdtree distance, it's not dimensionwise additive.
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
{
ResultType result = ResultType();
ResultType diff0, diff1, diff2, diff3;
Iterator1 last = a + size;
Iterator1 lastgroup = last - 3;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
diff0 = std::abs(a[0] - b[0]);
diff1 = std::abs(a[1] - b[1]);
diff2 = std::abs(a[2] - b[2]);
diff3 = std::abs(a[3] - b[3]);
if (diff0>result) {result = diff0; }
if (diff1>result) {result = diff1; }
if (diff2>result) {result = diff2; }
if (diff3>result) {result = diff3; }
a += 4;
b += 4;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
while (a < last) {
diff0 = std::abs(*a++ - *b++);
result = (diff0>result) ? diff0 : result;
}
return result;
}
/* This distance functor is not dimension-wise additive, which
* makes it an invalid kd-tree distance, not implementing the accum_dist method */
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
* bit count of A exclusive XOR'ed with B
*/
struct HammingLUT
{
typedef unsigned char ElementType;
typedef int ResultType;
/** this will count the bits in a ^ b
*/
ResultType operator()(const unsigned char* a, const unsigned char* b, int size) const
{
ResultType result = 0;
for (int i = 0; i < size; i++) {
result += byteBitsLookUp(a[i] ^ b[i]);
}
return result;
}
/** \brief given a byte, count the bits using a look up table
* \param b the byte to count bits. The look up table has an entry for all
* values of b, where that entry is the number of bits.
* \return the number of bits in byte b
*/
static unsigned char byteBitsLookUp(unsigned char b)
{
static const unsigned char table[256] = {
/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
/* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
/* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
/* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4,
/* 10 */ 1, /* 11 */ 2, /* 12 */ 2, /* 13 */ 3,
/* 14 */ 2, /* 15 */ 3, /* 16 */ 3, /* 17 */ 4,
/* 18 */ 2, /* 19 */ 3, /* 1a */ 3, /* 1b */ 4,
/* 1c */ 3, /* 1d */ 4, /* 1e */ 4, /* 1f */ 5,
/* 20 */ 1, /* 21 */ 2, /* 22 */ 2, /* 23 */ 3,
/* 24 */ 2, /* 25 */ 3, /* 26 */ 3, /* 27 */ 4,
/* 28 */ 2, /* 29 */ 3, /* 2a */ 3, /* 2b */ 4,
/* 2c */ 3, /* 2d */ 4, /* 2e */ 4, /* 2f */ 5,
/* 30 */ 2, /* 31 */ 3, /* 32 */ 3, /* 33 */ 4,
/* 34 */ 3, /* 35 */ 4, /* 36 */ 4, /* 37 */ 5,
/* 38 */ 3, /* 39 */ 4, /* 3a */ 4, /* 3b */ 5,
/* 3c */ 4, /* 3d */ 5, /* 3e */ 5, /* 3f */ 6,
/* 40 */ 1, /* 41 */ 2, /* 42 */ 2, /* 43 */ 3,
/* 44 */ 2, /* 45 */ 3, /* 46 */ 3, /* 47 */ 4,
/* 48 */ 2, /* 49 */ 3, /* 4a */ 3, /* 4b */ 4,
/* 4c */ 3, /* 4d */ 4, /* 4e */ 4, /* 4f */ 5,
/* 50 */ 2, /* 51 */ 3, /* 52 */ 3, /* 53 */ 4,
/* 54 */ 3, /* 55 */ 4, /* 56 */ 4, /* 57 */ 5,
/* 58 */ 3, /* 59 */ 4, /* 5a */ 4, /* 5b */ 5,
/* 5c */ 4, /* 5d */ 5, /* 5e */ 5, /* 5f */ 6,
/* 60 */ 2, /* 61 */ 3, /* 62 */ 3, /* 63 */ 4,
/* 64 */ 3, /* 65 */ 4, /* 66 */ 4, /* 67 */ 5,
/* 68 */ 3, /* 69 */ 4, /* 6a */ 4, /* 6b */ 5,
/* 6c */ 4, /* 6d */ 5, /* 6e */ 5, /* 6f */ 6,
/* 70 */ 3, /* 71 */ 4, /* 72 */ 4, /* 73 */ 5,
/* 74 */ 4, /* 75 */ 5, /* 76 */ 5, /* 77 */ 6,
/* 78 */ 4, /* 79 */ 5, /* 7a */ 5, /* 7b */ 6,
/* 7c */ 5, /* 7d */ 6, /* 7e */ 6, /* 7f */ 7,
/* 80 */ 1, /* 81 */ 2, /* 82 */ 2, /* 83 */ 3,
/* 84 */ 2, /* 85 */ 3, /* 86 */ 3, /* 87 */ 4,
/* 88 */ 2, /* 89 */ 3, /* 8a */ 3, /* 8b */ 4,
/* 8c */ 3, /* 8d */ 4, /* 8e */ 4, /* 8f */ 5,
/* 90 */ 2, /* 91 */ 3, /* 92 */ 3, /* 93 */ 4,
/* 94 */ 3, /* 95 */ 4, /* 96 */ 4, /* 97 */ 5,
/* 98 */ 3, /* 99 */ 4, /* 9a */ 4, /* 9b */ 5,
/* 9c */ 4, /* 9d */ 5, /* 9e */ 5, /* 9f */ 6,
/* a0 */ 2, /* a1 */ 3, /* a2 */ 3, /* a3 */ 4,
/* a4 */ 3, /* a5 */ 4, /* a6 */ 4, /* a7 */ 5,
/* a8 */ 3, /* a9 */ 4, /* aa */ 4, /* ab */ 5,
/* ac */ 4, /* ad */ 5, /* ae */ 5, /* af */ 6,
/* b0 */ 3, /* b1 */ 4, /* b2 */ 4, /* b3 */ 5,
/* b4 */ 4, /* b5 */ 5, /* b6 */ 5, /* b7 */ 6,
/* b8 */ 4, /* b9 */ 5, /* ba */ 5, /* bb */ 6,
/* bc */ 5, /* bd */ 6, /* be */ 6, /* bf */ 7,
/* c0 */ 2, /* c1 */ 3, /* c2 */ 3, /* c3 */ 4,
/* c4 */ 3, /* c5 */ 4, /* c6 */ 4, /* c7 */ 5,
/* c8 */ 3, /* c9 */ 4, /* ca */ 4, /* cb */ 5,
/* cc */ 4, /* cd */ 5, /* ce */ 5, /* cf */ 6,
/* d0 */ 3, /* d1 */ 4, /* d2 */ 4, /* d3 */ 5,
/* d4 */ 4, /* d5 */ 5, /* d6 */ 5, /* d7 */ 6,
/* d8 */ 4, /* d9 */ 5, /* da */ 5, /* db */ 6,
/* dc */ 5, /* dd */ 6, /* de */ 6, /* df */ 7,
/* e0 */ 3, /* e1 */ 4, /* e2 */ 4, /* e3 */ 5,
/* e4 */ 4, /* e5 */ 5, /* e6 */ 5, /* e7 */ 6,
/* e8 */ 4, /* e9 */ 5, /* ea */ 5, /* eb */ 6,
/* ec */ 5, /* ed */ 6, /* ee */ 6, /* ef */ 7,
/* f0 */ 4, /* f1 */ 5, /* f2 */ 5, /* f3 */ 6,
/* f4 */ 5, /* f5 */ 6, /* f6 */ 6, /* f7 */ 7,
/* f8 */ 5, /* f9 */ 6, /* fa */ 6, /* fb */ 7,
/* fc */ 6, /* fd */ 7, /* fe */ 7, /* ff */ 8
};
return table[b];
}
};
/**
* Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
* That code was taken from brief.cpp in OpenCV
*/
template<class T>
struct HammingPopcnt
{
typedef T ElementType;
typedef int ResultType;
template<typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
{
ResultType result = 0;
#if __GNUC__
#if ANDROID && HAVE_NEON
static uint64_t features = android_getCpuFeatures();
if ((features& ANDROID_CPU_ARM_FEATURE_NEON)) {
for (size_t i = 0; i < size; i += 16) {
uint8x16_t A_vec = vld1q_u8 (a + i);
uint8x16_t B_vec = vld1q_u8 (b + i);
//uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t)
uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
uint8x16_t bitsSet += vcntq_u8 (AxorB);
//uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t)
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
uint64x2_t bitSet2 = vpaddlq_u32 (bitSet4);
result += vgetq_lane_u64 (bitSet2,0);
result += vgetq_lane_u64 (bitSet2,1);
}
}
else
#endif
//for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
typedef unsigned long long pop_t;
const size_t modulo = size % sizeof(pop_t);
const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
const pop_t* a2_end = a2 + (size / sizeof(pop_t));
for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
if (modulo) {
//in the case where size is not dividable by sizeof(size_t)
//need to mask off the bits at the end
pop_t a_final = 0, b_final = 0;
memcpy(&a_final, a2, modulo);
memcpy(&b_final, b2, modulo);
result += __builtin_popcountll(a_final ^ b_final);
}
#else
HammingLUT lut;
result = lut(reinterpret_cast<const unsigned char*> (a),
reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
#endif
return result;
}
};
template<typename T>
struct Hamming
{
typedef T ElementType;
typedef unsigned int ResultType;
/** This is popcount_3() from:
* http://en.wikipedia.org/wiki/Hamming_weight */
unsigned int popcnt32(uint32_t n) const
{
n -= ((n >> 1) & 0x55555555);
n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
}
unsigned int popcnt64(uint64_t n) const
{
n -= ((n >> 1) & 0x5555555555555555LL);
n = (n & 0x3333333333333333LL) + ((n >> 2) & 0x3333333333333333LL);
return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0fLL)* 0x0101010101010101LL) >> 56;
}
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = 0) const
{
#ifdef FLANN_PLATFORM_64_BIT
const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
ResultType result = 0;
size /= (sizeof(uint64_t)/sizeof(unsigned char));
for(size_t i = 0; i < size; ++i ) {
result += popcnt64(*pa ^ *pb);
++pa;
++pb;
}
#else
const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
ResultType result = 0;
size /= (sizeof(uint32_t)/sizeof(unsigned char));
for(size_t i = 0; i < size; ++i ) {
result += popcnt32(*pa ^ *pb);
++pa;
++pb;
}
#endif
return result;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T>
struct HistIntersectionDistance
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
/**
* Compute the histogram intersection distance
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
{
ResultType result = ResultType();
ResultType min0, min1, min2, min3;
Iterator1 last = a + size;
Iterator1 lastgroup = last - 3;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
result += min0 + min1 + min2 + min3;
a += 4;
b += 4;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
/* Process last 0-3 pixels. Not needed for standard vector lengths. */
while (a < last) {
min0 = (ResultType)(*a < *b ? *a : *b);
result += min0;
++a;
++b;
}
return result;
}
/**
* Partial distance, used by the kd-tree.
*/
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
return a<b ? a : b;
}
};
template<class T>
struct HellingerDistance
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
/**
* Compute the Hellinger distance
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
{
ResultType result = ResultType();
ResultType diff0, diff1, diff2, diff3;
Iterator1 last = a + size;
Iterator1 lastgroup = last - 3;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
a += 4;
b += 4;
}
while (a < last) {
diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
result += diff0 * diff0;
}
return result;
}
/**
* Partial distance, used by the kd-tree.
*/
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
ResultType dist = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
return dist * dist;
}
};
template<class T>
struct ChiSquareDistance
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
/**
* Compute the chi-square distance
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
{
ResultType result = ResultType();
ResultType sum, diff;
Iterator1 last = a + size;
while (a < last) {
sum = (ResultType)(*a + *b);
if (sum>0) {
diff = (ResultType)(*a - *b);
result += diff*diff/sum;
}
++a;
++b;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
return result;
}
/**
* Partial distance, used by the kd-tree.
*/
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
ResultType result = ResultType();
ResultType sum, diff;
sum = (ResultType)(a+b);
if (sum>0) {
diff = (ResultType)(a-b);
result = diff*diff/sum;
}
return result;
}
};
template<class T>
struct KL_Divergence
{
typedef bool is_kdtree_distance;
typedef T ElementType;
typedef typename Accumulator<T>::Type ResultType;
/**
* Compute the KullbackLeibler divergence
*/
template <typename Iterator1, typename Iterator2>
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
{
ResultType result = ResultType();
Iterator1 last = a + size;
while (a < last) {
if ( *a != 0 && *b != 0 ) {
ResultType ratio = (ResultType)(*a / *b);
if (ratio>0) {
result += *a * log(ratio);
}
}
++a;
++b;
if ((worst_dist>0)&&(result>worst_dist)) {
return result;
}
}
return result;
}
/**
* Partial distance, used by the kd-tree.
*/
template <typename U, typename V>
inline ResultType accum_dist(const U& a, const V& b, int) const
{
ResultType result = ResultType();
if( a != 0 && b != 0 ) {
ResultType ratio = (ResultType)(a / b);
if (ratio>0) {
result = a * log(ratio);
}
}
return result;
}
};
}
#endif //FLANN_DIST_H_