You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
4.3 KiB
164 lines
4.3 KiB
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef FLANN_LINEAR_INDEX_H_
|
|
#define FLANN_LINEAR_INDEX_H_
|
|
|
|
#include "FLANN/general.h"
|
|
#include "FLANN/algorithms/nn_index.h"
|
|
|
|
namespace flann
|
|
{
|
|
|
|
struct LinearIndexParams : public IndexParams
|
|
{
|
|
LinearIndexParams()
|
|
{
|
|
(* this)["algorithm"] = FLANN_INDEX_LINEAR;
|
|
}
|
|
};
|
|
|
|
template <typename Distance>
|
|
class LinearIndex : public NNIndex<Distance>
|
|
{
|
|
public:
|
|
|
|
typedef typename Distance::ElementType ElementType;
|
|
typedef typename Distance::ResultType DistanceType;
|
|
|
|
typedef NNIndex<Distance> BaseClass;
|
|
|
|
LinearIndex(const IndexParams& params = LinearIndexParams(), Distance d = Distance()) :
|
|
BaseClass(params, d)
|
|
{
|
|
}
|
|
|
|
LinearIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LinearIndexParams(), Distance d = Distance()) :
|
|
BaseClass(params, d)
|
|
{
|
|
setDataset(input_data);
|
|
}
|
|
|
|
LinearIndex(const LinearIndex& other) : BaseClass(other)
|
|
{
|
|
}
|
|
|
|
LinearIndex& operator=(LinearIndex other)
|
|
{
|
|
this->swap(other);
|
|
return *this;
|
|
}
|
|
|
|
virtual ~LinearIndex()
|
|
{
|
|
}
|
|
|
|
BaseClass* clone() const
|
|
{
|
|
return new LinearIndex(*this);
|
|
}
|
|
|
|
void addPoints(const Matrix<ElementType>& points, float rebuild_threshold = 2)
|
|
{
|
|
assert(points.cols==veclen_);
|
|
extendDataset(points);
|
|
}
|
|
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return FLANN_INDEX_LINEAR;
|
|
}
|
|
|
|
|
|
int usedMemory() const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
template<typename Archive>
|
|
void serialize(Archive& ar)
|
|
{
|
|
ar.setObject(this);
|
|
|
|
ar & *static_cast<NNIndex<Distance>*>(this);
|
|
|
|
if (Archive::is_loading::value) {
|
|
index_params_["algorithm"] = getType();
|
|
}
|
|
}
|
|
|
|
void saveIndex(FILE* stream)
|
|
{
|
|
serialization::SaveArchive sa(stream);
|
|
sa & *this;
|
|
}
|
|
|
|
void loadIndex(FILE* stream)
|
|
{
|
|
serialization::LoadArchive la(stream);
|
|
la & *this;
|
|
}
|
|
|
|
void findNeighbors(ResultSet<DistanceType>& resultSet, const ElementType* vec, const SearchParams& /*searchParams*/) const
|
|
{
|
|
if (removed_) {
|
|
for (size_t i = 0; i < points_.size(); ++i) {
|
|
if (removed_points_.test(i)) continue;
|
|
DistanceType dist = distance_(points_[i], vec, veclen_);
|
|
resultSet.addPoint(dist, i);
|
|
}
|
|
}
|
|
else {
|
|
for (size_t i = 0; i < points_.size(); ++i) {
|
|
DistanceType dist = distance_(points_[i], vec, veclen_);
|
|
resultSet.addPoint(dist, i);
|
|
}
|
|
}
|
|
}
|
|
protected:
|
|
void buildIndexImpl()
|
|
{
|
|
/* nothing to do here for linear search */
|
|
}
|
|
|
|
void freeIndex()
|
|
{
|
|
/* nothing to do here for linear search */
|
|
}
|
|
|
|
private:
|
|
|
|
USING_BASECLASS_SYMBOLS
|
|
};
|
|
|
|
}
|
|
|
|
#endif // FLANN_LINEAR_INDEX_H_
|