You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
exercise_2/3rdparty/colmap-dev/lib/FLANN/util/heap.h

457 lines
9.8 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef FLANN_HEAP_H_
#define FLANN_HEAP_H_
#include <algorithm>
#include <vector>
namespace flann
{
/**
* Priority Queue Implementation
*
* The priority queue is implemented with a heap. A heap is a complete
* (full) binary tree in which each parent is less than both of its
* children, but the order of the children is unspecified.
*/
template <typename T>
class Heap
{
/**
* Storage array for the heap.
* Type T must be comparable.
*/
std::vector<T> heap;
int length;
/**
* Number of element in the heap
*/
int count;
public:
/**
* Constructor.
*
* Params:
* size = heap size
*/
Heap(int size)
{
length = size;
heap.reserve(length);
count = 0;
}
/**
*
* Returns: heap size
*/
int size()
{
return count;
}
/**
* Tests if the heap is empty
*
* Returns: true is heap empty, false otherwise
*/
bool empty()
{
return size()==0;
}
/**
* Clears the heap.
*/
void clear()
{
heap.clear();
count = 0;
}
struct CompareT : public std::binary_function<T,T,bool>
{
bool operator()(const T& t_1, const T& t_2) const
{
return t_2 < t_1;
}
};
/**
* Insert a new element in the heap.
*
* We select the next empty leaf node, and then keep moving any larger
* parents down until the right location is found to store this element.
*
* Params:
* value = the new element to be inserted in the heap
*/
void insert(const T& value)
{
/* If heap is full, then return without adding this element. */
if (count == length) {
return;
}
heap.push_back(value);
static CompareT compareT;
std::push_heap(heap.begin(), heap.end(), compareT);
++count;
}
/**
* Returns the node of minimum value from the heap (top of the heap).
*
* Params:
* value = out parameter used to return the min element
* Returns: false if heap empty
*/
bool popMin(T& value)
{
if (count == 0) {
return false;
}
value = heap[0];
static CompareT compareT;
std::pop_heap(heap.begin(), heap.end(), compareT);
heap.pop_back();
--count;
return true; /* Return old last node. */
}
};
template <typename T>
class IntervalHeap
{
struct Interval
{
T left;
T right;
};
/**
* Storage array for the heap.
* Type T must be comparable.
*/
std::vector<Interval> heap;
size_t capacity_;
size_t size_;
public:
/**
* Constructor.
*
* Params:
* size = heap size
*/
IntervalHeap(int capacity) : capacity_(capacity), size_(0)
{
heap.resize(capacity/2 + capacity%2 + 1); // 1-based indexing
}
/**
* @return Heap size
*/
size_t size()
{
return size_;
}
/**
* Tests if the heap is empty
* @return true is heap empty, false otherwise
*/
bool empty()
{
return size_==0;
}
/**
* Clears the heap.
*/
void clear()
{
size_ = 0;
}
void insert(const T& value)
{
/* If heap is full, then return without adding this element. */
if (size_ == capacity_) {
return;
}
// insert into the root
if (size_<2) {
if (size_==0) {
heap[1].left = value;
heap[1].right = value;
}
else {
if (value<heap[1].left) {
heap[1].left = value;
}
else {
heap[1].right = value;
}
}
++size_;
return;
}
size_t last_pos = size_/2 + size_%2;
bool min_heap;
if (size_%2) { // odd number of elements
min_heap = (value<heap[last_pos].left)? true : false;
}
else {
++last_pos;
min_heap = (value<heap[last_pos/2].left)? true : false;
}
if (min_heap) {
size_t pos = last_pos;
size_t par = pos/2;
while (pos>1 && value < heap[par].left) {
heap[pos].left = heap[par].left;
pos = par;
par = pos/2;
}
heap[pos].left = value;
++size_;
if (size_%2) { // duplicate element in last position if size is odd
heap[last_pos].right = heap[last_pos].left;
}
}
else {
size_t pos = last_pos;
size_t par = pos/2;
while (pos>1 && heap[par].right < value) {
heap[pos].right = heap[par].right;
pos = par;
par = pos/2;
}
heap[pos].right = value;
++size_;
if (size_%2) { // duplicate element in last position if size is odd
heap[last_pos].left = heap[last_pos].right;
}
}
}
/**
* Returns the node of minimum value from the heap
* @param value out parameter used to return the min element
* @return false if heap empty
*/
bool popMin(T& value)
{
if (size_ == 0) {
return false;
}
value = heap[1].left;
size_t last_pos = size_/2 + size_%2;
T elem = heap[last_pos].left;
if (size_ % 2) { // odd number of elements
--last_pos;
}
else {
heap[last_pos].left = heap[last_pos].right;
}
--size_;
if (size_<2) return true;
size_t crt=1; // root node
size_t child = crt*2;
while (child <= last_pos) {
if (child < last_pos && heap[child+1].left < heap[child].left) ++child; // pick the child with min
if (!(heap[child].left<elem)) break;
heap[crt].left = heap[child].left;
if (heap[child].right<elem) {
std::swap(elem, heap[child].right);
}
crt = child;
child *= 2;
}
heap[crt].left = elem;
return true;
}
/**
* Returns the element of maximum value from the heap
* @param value
* @return false if heap empty
*/
bool popMax(T& value)
{
if (size_ == 0) {
return false;
}
value = heap[1].right;
size_t last_pos = size_/2 + size_%2;
T elem = heap[last_pos].right;
if (size_%2) { // odd number of elements
--last_pos;
}
else {
heap[last_pos].right = heap[last_pos].left;
}
--size_;
if (size_<2) return true;
size_t crt=1; // root node
size_t child = crt*2;
while (child <= last_pos) {
if (child < last_pos && heap[child].right < heap[child+1].right) ++child; // pick the child with max
if (!(elem < heap[child].right)) break;
heap[crt].right = heap[child].right;
if (elem<heap[child].left) {
std::swap(elem, heap[child].left);
}
crt = child;
child *= 2;
}
heap[crt].right = elem;
return true;
}
bool getMin(T& value)
{
if (size_==0) {
return false;
}
value = heap[1].left;
return true;
}
bool getMax(T& value)
{
if (size_==0) {
return false;
}
value = heap[1].right;
return true;
}
};
template <typename T>
class BoundedHeap
{
IntervalHeap<T> interval_heap_;
size_t capacity_;
public:
BoundedHeap(size_t capacity) : interval_heap_(capacity), capacity_(capacity)
{
}
/**
* Returns: heap size
*/
int size()
{
return interval_heap_.size();
}
/**
* Tests if the heap is empty
* Returns: true is heap empty, false otherwise
*/
bool empty()
{
return interval_heap_.empty();
}
/**
* Clears the heap.
*/
void clear()
{
interval_heap_.clear();
}
void insert(const T& value)
{
if (interval_heap_.size()==capacity_) {
T max;
interval_heap_.getMax(max);
if (max<value) return;
interval_heap_.popMax(max);
}
interval_heap_.insert(value);
}
bool popMin(T& value)
{
return interval_heap_.popMin(value);
}
};
}
#endif //FLANN_HEAP_H_