You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
457 lines
9.8 KiB
457 lines
9.8 KiB
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef FLANN_HEAP_H_
|
|
#define FLANN_HEAP_H_
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
namespace flann
|
|
{
|
|
|
|
/**
|
|
* Priority Queue Implementation
|
|
*
|
|
* The priority queue is implemented with a heap. A heap is a complete
|
|
* (full) binary tree in which each parent is less than both of its
|
|
* children, but the order of the children is unspecified.
|
|
*/
|
|
template <typename T>
|
|
class Heap
|
|
{
|
|
|
|
/**
|
|
* Storage array for the heap.
|
|
* Type T must be comparable.
|
|
*/
|
|
std::vector<T> heap;
|
|
int length;
|
|
|
|
/**
|
|
* Number of element in the heap
|
|
*/
|
|
int count;
|
|
|
|
|
|
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* Params:
|
|
* size = heap size
|
|
*/
|
|
|
|
Heap(int size)
|
|
{
|
|
length = size;
|
|
heap.reserve(length);
|
|
count = 0;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Returns: heap size
|
|
*/
|
|
int size()
|
|
{
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* Tests if the heap is empty
|
|
*
|
|
* Returns: true is heap empty, false otherwise
|
|
*/
|
|
bool empty()
|
|
{
|
|
return size()==0;
|
|
}
|
|
|
|
/**
|
|
* Clears the heap.
|
|
*/
|
|
void clear()
|
|
{
|
|
heap.clear();
|
|
count = 0;
|
|
}
|
|
|
|
struct CompareT : public std::binary_function<T,T,bool>
|
|
{
|
|
bool operator()(const T& t_1, const T& t_2) const
|
|
{
|
|
return t_2 < t_1;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Insert a new element in the heap.
|
|
*
|
|
* We select the next empty leaf node, and then keep moving any larger
|
|
* parents down until the right location is found to store this element.
|
|
*
|
|
* Params:
|
|
* value = the new element to be inserted in the heap
|
|
*/
|
|
void insert(const T& value)
|
|
{
|
|
/* If heap is full, then return without adding this element. */
|
|
if (count == length) {
|
|
return;
|
|
}
|
|
|
|
heap.push_back(value);
|
|
static CompareT compareT;
|
|
std::push_heap(heap.begin(), heap.end(), compareT);
|
|
++count;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Returns the node of minimum value from the heap (top of the heap).
|
|
*
|
|
* Params:
|
|
* value = out parameter used to return the min element
|
|
* Returns: false if heap empty
|
|
*/
|
|
bool popMin(T& value)
|
|
{
|
|
if (count == 0) {
|
|
return false;
|
|
}
|
|
|
|
value = heap[0];
|
|
static CompareT compareT;
|
|
std::pop_heap(heap.begin(), heap.end(), compareT);
|
|
heap.pop_back();
|
|
--count;
|
|
|
|
return true; /* Return old last node. */
|
|
}
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
class IntervalHeap
|
|
{
|
|
struct Interval
|
|
{
|
|
T left;
|
|
T right;
|
|
};
|
|
|
|
/**
|
|
* Storage array for the heap.
|
|
* Type T must be comparable.
|
|
*/
|
|
std::vector<Interval> heap;
|
|
size_t capacity_;
|
|
size_t size_;
|
|
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* Params:
|
|
* size = heap size
|
|
*/
|
|
|
|
IntervalHeap(int capacity) : capacity_(capacity), size_(0)
|
|
{
|
|
heap.resize(capacity/2 + capacity%2 + 1); // 1-based indexing
|
|
}
|
|
|
|
/**
|
|
* @return Heap size
|
|
*/
|
|
size_t size()
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
/**
|
|
* Tests if the heap is empty
|
|
* @return true is heap empty, false otherwise
|
|
*/
|
|
bool empty()
|
|
{
|
|
return size_==0;
|
|
}
|
|
|
|
/**
|
|
* Clears the heap.
|
|
*/
|
|
void clear()
|
|
{
|
|
size_ = 0;
|
|
}
|
|
|
|
void insert(const T& value)
|
|
{
|
|
/* If heap is full, then return without adding this element. */
|
|
if (size_ == capacity_) {
|
|
return;
|
|
}
|
|
|
|
// insert into the root
|
|
if (size_<2) {
|
|
if (size_==0) {
|
|
heap[1].left = value;
|
|
heap[1].right = value;
|
|
}
|
|
else {
|
|
if (value<heap[1].left) {
|
|
heap[1].left = value;
|
|
}
|
|
else {
|
|
heap[1].right = value;
|
|
}
|
|
}
|
|
++size_;
|
|
return;
|
|
}
|
|
|
|
size_t last_pos = size_/2 + size_%2;
|
|
bool min_heap;
|
|
|
|
if (size_%2) { // odd number of elements
|
|
min_heap = (value<heap[last_pos].left)? true : false;
|
|
}
|
|
else {
|
|
++last_pos;
|
|
min_heap = (value<heap[last_pos/2].left)? true : false;
|
|
}
|
|
|
|
if (min_heap) {
|
|
size_t pos = last_pos;
|
|
size_t par = pos/2;
|
|
while (pos>1 && value < heap[par].left) {
|
|
heap[pos].left = heap[par].left;
|
|
pos = par;
|
|
par = pos/2;
|
|
}
|
|
heap[pos].left = value;
|
|
++size_;
|
|
|
|
if (size_%2) { // duplicate element in last position if size is odd
|
|
heap[last_pos].right = heap[last_pos].left;
|
|
}
|
|
}
|
|
else {
|
|
size_t pos = last_pos;
|
|
size_t par = pos/2;
|
|
while (pos>1 && heap[par].right < value) {
|
|
heap[pos].right = heap[par].right;
|
|
pos = par;
|
|
par = pos/2;
|
|
}
|
|
heap[pos].right = value;
|
|
++size_;
|
|
|
|
if (size_%2) { // duplicate element in last position if size is odd
|
|
heap[last_pos].left = heap[last_pos].right;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns the node of minimum value from the heap
|
|
* @param value out parameter used to return the min element
|
|
* @return false if heap empty
|
|
*/
|
|
bool popMin(T& value)
|
|
{
|
|
if (size_ == 0) {
|
|
return false;
|
|
}
|
|
|
|
value = heap[1].left;
|
|
size_t last_pos = size_/2 + size_%2;
|
|
T elem = heap[last_pos].left;
|
|
|
|
if (size_ % 2) { // odd number of elements
|
|
--last_pos;
|
|
}
|
|
else {
|
|
heap[last_pos].left = heap[last_pos].right;
|
|
}
|
|
--size_;
|
|
if (size_<2) return true;
|
|
|
|
size_t crt=1; // root node
|
|
size_t child = crt*2;
|
|
|
|
while (child <= last_pos) {
|
|
if (child < last_pos && heap[child+1].left < heap[child].left) ++child; // pick the child with min
|
|
|
|
if (!(heap[child].left<elem)) break;
|
|
|
|
heap[crt].left = heap[child].left;
|
|
if (heap[child].right<elem) {
|
|
std::swap(elem, heap[child].right);
|
|
}
|
|
|
|
crt = child;
|
|
child *= 2;
|
|
}
|
|
heap[crt].left = elem;
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns the element of maximum value from the heap
|
|
* @param value
|
|
* @return false if heap empty
|
|
*/
|
|
bool popMax(T& value)
|
|
{
|
|
if (size_ == 0) {
|
|
return false;
|
|
}
|
|
|
|
value = heap[1].right;
|
|
size_t last_pos = size_/2 + size_%2;
|
|
T elem = heap[last_pos].right;
|
|
|
|
if (size_%2) { // odd number of elements
|
|
--last_pos;
|
|
}
|
|
else {
|
|
heap[last_pos].right = heap[last_pos].left;
|
|
}
|
|
--size_;
|
|
if (size_<2) return true;
|
|
|
|
size_t crt=1; // root node
|
|
size_t child = crt*2;
|
|
|
|
while (child <= last_pos) {
|
|
if (child < last_pos && heap[child].right < heap[child+1].right) ++child; // pick the child with max
|
|
|
|
if (!(elem < heap[child].right)) break;
|
|
|
|
heap[crt].right = heap[child].right;
|
|
if (elem<heap[child].left) {
|
|
std::swap(elem, heap[child].left);
|
|
}
|
|
|
|
crt = child;
|
|
child *= 2;
|
|
}
|
|
heap[crt].right = elem;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool getMin(T& value)
|
|
{
|
|
if (size_==0) {
|
|
return false;
|
|
}
|
|
value = heap[1].left;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool getMax(T& value)
|
|
{
|
|
if (size_==0) {
|
|
return false;
|
|
}
|
|
value = heap[1].right;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
template <typename T>
|
|
class BoundedHeap
|
|
{
|
|
IntervalHeap<T> interval_heap_;
|
|
size_t capacity_;
|
|
public:
|
|
BoundedHeap(size_t capacity) : interval_heap_(capacity), capacity_(capacity)
|
|
{
|
|
|
|
}
|
|
|
|
/**
|
|
* Returns: heap size
|
|
*/
|
|
int size()
|
|
{
|
|
return interval_heap_.size();
|
|
}
|
|
|
|
/**
|
|
* Tests if the heap is empty
|
|
* Returns: true is heap empty, false otherwise
|
|
*/
|
|
bool empty()
|
|
{
|
|
return interval_heap_.empty();
|
|
}
|
|
|
|
/**
|
|
* Clears the heap.
|
|
*/
|
|
void clear()
|
|
{
|
|
interval_heap_.clear();
|
|
}
|
|
|
|
void insert(const T& value)
|
|
{
|
|
if (interval_heap_.size()==capacity_) {
|
|
T max;
|
|
interval_heap_.getMax(max);
|
|
if (max<value) return;
|
|
interval_heap_.popMax(max);
|
|
}
|
|
interval_heap_.insert(value);
|
|
}
|
|
|
|
bool popMin(T& value)
|
|
{
|
|
return interval_heap_.popMin(value);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif //FLANN_HEAP_H_
|